Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 223(2): 766-782, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30887522

RESUMO

Wood production in fast-growing Eucalyptus grandis trees is highly dependent on both potassium (K) fertilization and water availability but the molecular processes underlying wood formation in response to the combined effects of these two limiting factors remain unknown. E. grandis trees were submitted to four combinations of K-fertilization and water supply. Weighted gene co-expression network analysis and MixOmics-based co-regulation networks were used to integrate xylem transcriptome, metabolome and complex wood traits. Functional characterization of a candidate gene was performed in transgenic E. grandis hairy roots. This integrated network-based approach enabled us to identify meaningful biological processes and regulators impacted by K-fertilization and/or water limitation. It revealed that modules of co-regulated genes and metabolites strongly correlated to wood complex traits are in the heart of a complex trade-off between biomass production and stress responses. Nested in these modules, potential new cell-wall regulators were identified, as further confirmed by the functional characterization of EgMYB137. These findings provide new insights into the regulatory mechanisms of wood formation under stressful conditions, pointing out both known and new regulators co-opted by K-fertilization and/or water limitation that may potentially promote adaptive wood traits.


Assuntos
Eucalyptus/crescimento & desenvolvimento , Potássio/farmacologia , Biologia de Sistemas , Árvores/crescimento & desenvolvimento , Água/farmacologia , Madeira/crescimento & desenvolvimento , Biomassa , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Eucalyptus/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Fenótipo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma/genética , Árvores/efeitos dos fármacos , Madeira/efeitos dos fármacos , Xilema/efeitos dos fármacos , Xilema/genética , Xilema/crescimento & desenvolvimento
2.
PLoS One ; 10(8): e0136573, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26313257

RESUMO

Saccharum officinarum bagasse (common name: sugarcane bagasse) and Pennisetum purpureum (also known as Napier grass) are among the most promising feedstocks for bioethanol production in Argentina and Brazil. In this study, both biomasses were assessed before and after acid pretreatment and following hydrolysis with Nasutitermes aquilinus and Cortaritermes fulviceps termite gut digestome. The chemical composition analysis of the biomasses after diluted acid pretreatment showed that the hemicellulose fraction was partially removed. The (hemi) cellulolytic activities were evaluated in bacterial culture supernatants of termite gut homogenates grown in treated and untreated biomasses. In all cases, we detected significantly higher endoglucanase and xylanase activities using pretreated biomasses compared to untreated biomasses, carboxymethylcellulose and xylan. Several protein bands with (hemi) cellulolytic activity were detected in zymograms and two-dimensional gel electrophoresis. Some proteins of these bands or spots were identified as xylanolytic peptides by mass spectrometry. Finally, the diversity of cultured cellulolytic bacterial endosymbionts associated to both Argentinean native termite species was analyzed. This study describes, for the first time, bacterial endosymbionts and endogenous (hemi) cellulases of two Argentinean native termites as well as their potential application in degradation of lignocellulosic biomass for bioethanol production.


Assuntos
Ácidos/química , Biomassa , Celulases/metabolismo , Isópteros/enzimologia , Pennisetum/enzimologia , Polissacarídeos/metabolismo , Saccharum/enzimologia , Animais , Argentina , Celulases/química , Sistema Digestório/enzimologia , Sistema Digestório/microbiologia , Proteínas de Insetos/metabolismo , Isópteros/classificação , Isópteros/microbiologia , Microscopia Eletrônica de Varredura , Pennisetum/microbiologia , Saccharum/microbiologia , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA