RESUMO
Geospatial fire behaviour and fire hazard simulators, fire effects models and smoke emission software commonly use standard fuel models in order to simplify data collection and the inclusion of complex fuel scenarios. These fuel models are often mapped using remotely sensed data. However, given the great complexity of fuelbeds, with properties that vary widely in both time and space, the use of these standard fuel models can greatly limit accurate fuel mapping. This affects fuel hazard assessment, fuel reduction treatment plans, fire management decision-making and evaluation of the environmental impact of wildfire. In this study, we developed unique customized fire behaviour fuel models for shrub and bracken communities, by using k-medoids clustering analysis based on both fuel structural characteristics and potential fire behaviour. We used an original database of 722 destructive sample plots in nine different shrub and bracken communities covering the entire distribution area in Galicia (NW Spain), one of the regions in Europe most affected by forest fires. Measurements of cover, height and fuel fractions loads differentiated by size and vegetative state (live or dead) were used to estimate the potential rate of fire spread with five different models including fireline intensity, heat per unit area and the flame length for each sampling site and considering extreme environmental conditions. The optimal number of clusters was established by combining practical knowledge about the shrubland communities under study and their associated fire behaviour, with maximization of the mean value of the silhouette variable and minimization of the within-cluster sum of squares. The structural characteristics of the medoids derived from the analysis were associated with each of the proposed customized fuel models. Finally, a simple dichotomous classification based only on shrub height was developed to enable construction of spatially explicit fuel model maps based on remotely sensed data. Thus, the methodology applied allows generation of a more realistic representation of fuel distribution in the landscape, based on fuel structure measurements of natural regional ecosystems rather than on the use of standard models. We believe that the proposed methodology is generally applicable to communities composed of other shrub and fern species in different biogeographical regions.
Assuntos
Incêndios , Incêndios Florestais , Ecossistema , Espanha , Europa (Continente)RESUMO
Botrytis cinerea is responsible for the gray mold disease, severely affecting Vitis vinifera grapevine and hundreds of other economically important crops. However, many mechanisms of this fruit-pathogen interaction remain unknown. The combined analysis of the transcriptome and metabolome of green fruits infected with B. cinerea from susceptible and tolerant genotypes was never performed in any fleshy fruit, mostly because green fruits are widely accepted to be resistant to this fungus. In this work, peppercorn-sized fruits were infected in the field or mock-treated, and berries were collected at green (EL32) stage from a susceptible (Trincadeira) and a tolerant (Syrah) variety. RNAseq and GC-MS data suggested that Syrah exhibited a pre-activated/basal defense relying on specific signaling pathways, hormonal regulation, namely jasmonate and ethylene metabolisms, and linked to phenylpropanoid metabolism. In addition, putative defensive metabolites such as shikimic, ursolic/ oleanolic, and trans-4-hydroxy cinnamic acids, and epigallocatechin were more abundant in Syrah than Trincadeira before infection. On the other hand, Trincadeira underwent relevant metabolic reprogramming upon infection but was unable to contain disease progression. RNA-seq analysis of the fungus in planta revealed an opposite scenario with higher gene expression activity within B. cinerea during infection of the tolerant cultivar and less activity in infected Trincadeira berries. The results suggested an activated virulence state during interaction with the tolerant cultivar without visible disease symptoms. Together, this study brings novel insights related to early infection strategies of B. cinerea and the green berry defense against necrotrophic fungi.
RESUMO
Grapevine is regarded as a highly profitable culture, being well spread worldwide and mostly directed to the wine-producing industry. Practices to maintain the vineyard in healthy conditions are tenuous and are exacerbated due to abiotic and biotic stresses, where fungal grapevine trunk diseases (GTDs) play a major role. The abolishment of chemical treatments and the intensification of several management practices led to an uprise in GTD outbreaks. Symptomatology of GTDs is very similar among diseases, leading to underdevelopment of the vines and death in extreme scenarios. Disease progression is widely affected by biotic and abiotic factors, and the prevalence of the pathogens varies with country and region. In this review, the state-of-the-art regarding identification and detection of GTDs is vastly analyzed. Methods and protocols used for the identification of GTDs, which are currently rather limited, are highlighted. The main conclusion is the utter need for the development of new technologies to easily and precisely detect the presence of the pathogens related to GTDs, allowing to readily take phytosanitary measures and/or proceed to plant removal in order to establish better vineyard management practices. Moreover, new practices and methods of detection, identification, and quantification of infectious material would allow imposing greater control on nurseries and plant exportation, limiting the movement of infected vines and thus avoiding the propagation of fungal inoculum throughout wine regions.
RESUMO
The aroma of grapes is cultivar dependent and is influenced by terroir, vineyard practices, and abiotic and biotic stresses. Trincadeira is a non-aromatic variety associated with low phenolic content and high sugar and organic acid levels. This cultivar, widely used in Portuguese wines, presents high susceptibility to Botrytis cinerea. This work aimed to characterise the volatile profile of Trincadeira grapes and how it changes under infection with B. cinerea. Thirty-six volatile organic compounds were identified, from different functional groups, namely alcohols, ester acetates, fatty acid esters, fatty acids, aldehydes, and products of the lipoxygenase pathway. Both free and glycosidic volatile organic compounds were analysed by Gas Chromatography and Gas Chromatography coupled to Mass Spectrometry for component quantification and identification, respectively. A multivariance analysis showed a clear discrimination between healthy and infected grapes with 2-trans-hexenal and isoamyl-acetate among the compounds identified as negative and positive markers of infection, respectively. Ester acetates such as 2-phenylethyl acetate, isoamyl acetate, and 2-methylbutyl acetate were present in higher contents in infected samples, whereas the contents of several fatty acid esters, such as ethyl decanoate and ethyl dodecanoate, decreased. These data were integrated with quantitative PCR data regarding genes involved in volatile metabolism and showed up-regulation of a gene coding for Hydroperoxide Lyase 2 in infected grapes. Altogether, these changes in volatile metabolism indicate an impact on the grape quality and may be related to defence against B. cinerea. The presence/absence of specific compounds might be used as infection biomarkers in the assessment of Trincadeira grapes' quality.
RESUMO
Botryosphaeria dieback is a grapevine trunk disease that affects all viticulture regions of the world. Species of the genus Lasiodiplodia have been reported as pathogenic toward grapevine in several growing regions and have also been previously reported from Portuguese vineyards. Species in this genus, particularly Lasiodiplodia theobromae, have been reported in previous studies to be more aggressive than other Botryosphaeriaceae species most commonly associated with Botryosphaeria dieback. The aim of this study was to assess the response of some of the more representative cultivars planted throughout Portuguese vineyards, 'Touriga Nacional,' 'Touriga Franca,' 'Alvarinho,' 'Aragonez' (= 'Tempranillo'), and 'Cabernet Sauvignon,' by performing artificial inoculations with Lasiodiplodia spp. collected in different geographic locations worldwide. Two experiments, one that involved inoculating 2-year-old grapevines kept in greenhouse-controlled conditions with six isolates of L. theobromae and one isolate of L. mediterranea and one that involved inoculating 7-year-old field-grown grapevines with two isolates of L. theobromae, were conducted twice. We assessed the response of the cultivars by evaluating the length of lesions caused by the isolates 5 months after inoculation. The results showed that all isolates studied were able to infect the annual shoots because they were always reisolated and produced internal wood discoloration. Significant differences were found for all isolate-cultivar combinations. In both experiments, Touriga Nacional showed the largest lesions and while Aragonez recorded the smallest lesions of the cultivars inoculated with Lasiodiplodia spp. In general, Portuguese isolates were more aggressive than those from Peru, which were mildly aggressive. These results are a first insight into the response of selected Portuguese cultivars to Lasiodiplodia species, which are present in Portugal but not commonly associated with Botryosphaeria dieback. This research contributes to our knowledge of the impact that Botryosphaeria dieback causal agents have on crucial national cultivars, which may help winegrowers not only manage current cultural practices but also optimize decision making when planning new vineyards.
Assuntos
Ascomicetos , Doenças das Plantas , Vitis/microbiologia , Ascomicetos/fisiologiaRESUMO
The genus Lasiodiplodia has been reported from several grape growing regions and is considered as one of the fastest wood colonizers, causing Botryosphaeria dieback. The aim of this study was to (i) evaluate the efficacy of Esquive®, a biocontrol agent, on vineyard pruning wound protection, applied single or, in a combined protection strategy with a new site-targeted copper-based treatment (LC2017), and (ii) compare their efficacy with chemical protection provided by the commercially available product, Tessior®. For two seasons, protectants were applied onto pruning wounds, while LC2017 was applied throughout the season according to the manufacturer's instructions. Pruning wounds of two different cultivars were inoculated with three isolates of Lasiodiplodia spp. Efficacy of the wound protectants, varied between both years of the assay and according to the cultivar studied but were able to control the pathogen to some extent. The application of LC2017 did not show clear evidence of improving the control obtained by the sole application of the other products tested. Nevertheless, LC2017 showed a fungistatic effect against Lasiodiplodia spp., in vitro, and has previously shown an elicitor effect against grapevine trunk diseases. Therefore, this combination of two protection strategies may constitute a promising long-term approach to mitigate the impact of Botryosphaeria dieback.
RESUMO
Grapevine (Vitis vinifera) berries are extremely sensitive to infection by the biotrophic pathogen Erysiphe necator, causing powdery mildew disease with deleterious effects on grape and wine quality. The combined analysis of the transcriptome and metabolome associated with this common fungal infection has not been previously carried out in any fruit. In order to identify the molecular, hormonal, and metabolic mechanisms associated with infection, healthy and naturally infected V. vinifera cv. Carignan berries were collected at two developmental stages: late green (EL33) and early véraison (EL35). RNA sequencing combined with GC-electron impact ionization time-of-flight MS, GC-electron impact ionization/quadrupole MS, and LC-tandem MS analyses revealed that powdery mildew-susceptible grape berries were able to activate defensive mechanisms with the involvement of salicylic acid and jasmonates and to accumulate defense-associated metabolites (e.g. phenylpropanoids, fatty acids). The defensive strategies also indicated organ-specific responses, namely the activation of fatty acid biosynthesis. However, defense responses were not enough to restrict fungal growth. The fungal metabolic program during infection involves secretion of effectors related to effector-triggered susceptibility, carbohydrate-active enzymes and activation of sugar, fatty acid, and nitrogen uptake, and could be under epigenetic regulation. This study also identified potential metabolic biomarkers such as gallic, eicosanoic, and docosanoic acids and resveratrol, which can be used to monitor early stages of infection.
Assuntos
Ascomicetos , Vitis , Resistência à Doença/genética , Epigênese Genética , Frutas/metabolismo , Doenças das Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vitis/genética , Vitis/metabolismoRESUMO
OBJECTIVE: To analyze the effects of pregnancy on neuromyelitis optica spectrum disorder (NMOSD) according to patients' serostatus and immunosuppressive therapy (IST). METHODS: We performed a retrospective multicenter international study on patients with NMOSD. Patients were tested for aquaporin-4 (AQP4) and myelin oligodendrocyte glycoprotein (MOG) antibodies (Ab). Informative pregnancies were reported when NMOSD onset occurred before or during pregnancy or up to 12 months postpartum. The mean annualized relapse rate (ARR) was calculated for the 12 months before conception, for each trimester of pregnancy, and postpartum. Events such as miscarriage, abortion, and preeclampsia were reported. IST was considered if taken in the 3 months before or during pregnancy. RESULTS: We included 89 pregnancies (46 with AQP4-Ab, 30 with MOG-Ab, and 13 without either Ab) in 58 patients with NMOSD. Compared to the prepregnancy period, the ARR was lower during pregnancy in each serostatus group and higher during the postpartum period in patients with AQP4-Ab (p < 0.01). Forty-eight percent (n = 31) of pregnancies occurred during IST and these patients presented fewer relapses during pregnancy and the 12 months postpartum than untreated patients (26% vs 53%, p = 0.04). Miscarriages occurred in 10 (11%) pregnancies, and were mainly in patients with AQP4-Ab (with or without IST) and a previous history of miscarriage. Preeclampsia was reported in 2 (2%) patients who were AQP4-Ab-positive. CONCLUSION: We found a rebound in the ARR during the first postpartum trimester that was higher than the prepregnancy period only in AQP4-Ab-positive patients. Taking IST just before or during pregnancy reduces the risk of relapses in these conditions.
Assuntos
Neuromielite Óptica/imunologia , Complicações na Gravidez/imunologia , Adulto , Aquaporina 4/imunologia , Autoanticorpos/imunologia , Autoantígenos/imunologia , Feminino , Humanos , Imunossupressores/uso terapêutico , Glicoproteína Mielina-Oligodendrócito/imunologia , Neuromielite Óptica/tratamento farmacológico , Período Pós-Parto/imunologia , Gravidez , Recidiva , Estudos RetrospectivosRESUMO
Botryosphaeria dieback caused by several Botryosphaeriaceae species is one of the most important grapevine trunk diseases affecting vineyards worldwide. These fungi cause wedge-shaped perennial cankers and black streaking of the wood and have also been associated with intervein leaf chlorosis, dried or mummified berries, and eventually, the death of the plant. Early season symptoms may sometimes be disregarded by growers, being mistaken with symptoms from other diseases such as downy mildew or botrytis rot. Currently, few studies are available to determine what species may be causing these early season symptoms in grapevines. During the 2018 season, during the flowering period, grapevine samples showing necrosis on green shoots, dried inflorescences, and flowers, were collected in vineyards throughout the central regions of Portugal. Isolations were performed from symptomatic organs, and twenty-three isolates of Botryosphaeriaceae were selected. An analysis of the ITS and part of the translation elongation factor 1-α sequences was performed, revealing that the two main species apparently responsible for these symptoms were Diplodia seriata and Neofusicoccum parvum. In pathogenicity tests conducted on 1-year-old plants grown under controlled conditions in a greenhouse and on field-grown clusters, symptoms were reproduced, confirming the pathogenic behavior of the selection of isolates.
RESUMO
Hormones play an important role in fruit ripening and in response to biotic stress. Nevertheless, analyses of hormonal profiling during plant development and defense are scarce. In this work, changes in hormonal metabolism in grapevine (Vitis vinifera) were compared between a susceptible (Trincadeira) and a tolerant (Syrah) variety during grape ripening and upon infection with Botrytis cinerea. Infection of grapes with the necrotrophic pathogen Botrytis cinerea leads to significant economic losses worldwide. Peppercorn-sized fruits were infected in the field and mock-treated and infected berries were collected at green, veraison and harvest stages for hormone analysis and targeted qPCR analysis of genes involved in hormonal metabolism and signaling. Results indicate a substantial reprogramming of hormonal metabolism during grape ripening and in response to fungal attack. Syrah and Trincadeira presented differences in the metabolism of abscisic acid (ABA), indole-3-acetic acid (IAA) and jasmonates during grape ripening that may be connected to fruit quality. On the other hand, high basal levels of salicylic acid (SA), jasmonates and IAA at an early stage of ripening, together with activated SA, jasmonates and IAA signaling, likely enable a fast defense response leading to grape resistance/ tolerance towards B. cinerea. The balance among the different phytohormones seems to depend on the ripening stage and on the intra-specific genetic background and may be fundamental in providing resistance or susceptibility. In addition, this study indicated the involvement of SA and IAA in defense against necrotrophic pathogens and gains insights into possible strategies for conventional breeding and/or gene editing aiming at improving grape quality and grape resistance against Botrytis cinerea.
Assuntos
Ácido Abscísico/metabolismo , Botrytis/metabolismo , Ciclopentanos/metabolismo , Ácidos Indolacéticos/metabolismo , Oxilipinas/metabolismo , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Ácido Salicílico/metabolismo , Vitis/metabolismo , Ácido Abscísico/fisiologia , Antocianinas/metabolismo , Reguladores de Crescimento de Plantas/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Especificidade da Espécie , Vitis/crescimento & desenvolvimento , Vitis/microbiologiaRESUMO
The ascomycete Diplodia seriata is a causal agent of grapevine trunk diseases. Here, we present the draft genome sequence of D. seriata isolate F98.1 (37.27 Mb, 512 contigs, 112 scaffolds, and 8,087 predicted protein-coding genes).
RESUMO
Botryosphaeria dieback is a grapevine trunk disease with a worldwide distribution associated with Diplodia seriata and Neofusicoccum parvum, among several other Botryosphaeriaceae species. The aforementioned xylem-inhabiting fungi cause wood lesions and leaf and berry symptoms, and eventually lead to the death of the plant. The aim of this work was to develop a simple model system to reproduce the foliar symptoms caused by D. seriata and N. parvum to better characterize fungal pathogenicity and determine the mechanisms involved in symptom development. Green stems of grafted 'Aragonez' grapevine cuttings were inoculated with three isolates of N. parvum and two isolates of D. seriata with different degrees of virulence and the experiment was repeated four times from 2011 to 2014. Three months after inoculation, the lesions associated with N. parvum were larger than those associated with D. seriata. Similarly, 8 months after inoculation, the percentage of plants showing foliar symptoms was greater in the N. parvum treatments than in the D. seriata treatments. During the emergence of foliar symptoms, plant stress-related responses were modulated in green stems and leaves, especially a downregulation of superoxide dismutase (SOD) and fasciclin-like arabinogalactan protein (fascAGP) and an upregulation of stilbene synthase (STS) genes with an accumulation of phenolics. In conclusion, the simple model system developed allowed a good characterization of isolate pathogenicity and correlation with foliar symptoms of Botryosphaeria dieback, namely spots on leaf margin and blade.
RESUMO
Liquid chromatography-diode array screening of the organic extract of the cultures of 13 isolates of the fungus Neofusicoccum parvum, the main causal agent of botryosphaeria dieback of grapevine, showed similar metabolites. One strain was selected for further chemical studies and led to the isolation and characterisation of 13 metabolites. Structures were elucidated through spectroscopic analyses, including one- and two-dimensional NMR and mass spectrometry, and through comparison to literature data. The isolated compounds belong to four different chemical families: five metabolites, namely, (-)-terremutin (1), (+)-terremutin hydrate (2), (+)-epi-sphaeropsidone (3) (-)-4-chloro-terremutin hydrate (4) and(+)-4-hydroxysuccinate-terremutin hydrate (5), belong to the family of dihydrotoluquinones; two metabolites, namely, (6S,7R) asperlin (6) and (6R,7S)-dia-asperlin (7), belong to the family of epoxylactones; four metabolites, namely, (R)-(-)-mellein (8), (3R,4R)-4-hydroxymellein (9), (3R,4S)-4-hydroxymellein (10) (R)(-)-3-hydroxymellein (11), belong to the family of dihydroisocoumarins; and two of the metabolites, namely, 6-methyl-salicylic acid (12) and 2-hydroxypropyl salicylic acid (13), belong to the family of hydroxybenzoic acids. We determined the phytotoxic activity of the isolated metabolites through a leaf disc assay and the expression of defence-related genes in Vitis vinifera cells cv. Chardonnay cultured with (-)-terremutin (1), the most abundant metabolite. Finally, analysis of the brown stripes of grapevine wood from plants showing botryosphaeria dieback symptoms revealed the presence of two of the isolated phytotoxins.
Assuntos
Ascomicetos/química , Citotoxinas/isolamento & purificação , Citotoxinas/farmacologia , Doenças das Plantas/microbiologia , Quinonas/isolamento & purificação , Quinonas/farmacologia , Vitis/microbiologia , Citotoxinas/química , Estrutura Molecular , Quinonas/química , EstereoisomerismoRESUMO
Vitis vinifera berries are sensitive towards infection by the necrotrophic pathogen Botrytis cinerea, leading to important economic losses worldwide. The combined analysis of the transcriptome and metabolome associated with fungal infection has not been performed previously in grapes or in another fleshy fruit. In an attempt to identify the molecular and metabolic mechanisms associated with the infection, peppercorn-sized fruits were infected in the field. Green and veraison berries were collected following infection for microarray analysis complemented with metabolic profiling of primary and other soluble metabolites and of volatile emissions. The results provided evidence of a reprogramming of carbohydrate and lipid metabolisms towards increased synthesis of secondary metabolites involved in plant defence, such as trans-resveratrol and gallic acid. This response was already activated in infected green berries with the putative involvement of jasmonic acid, ethylene, polyamines, and auxins, whereas salicylic acid did not seem to be involved. Genes encoding WRKY transcription factors, pathogenesis-related proteins, glutathione S-transferase, stilbene synthase, and phenylalanine ammonia-lyase were upregulated in infected berries. However, salicylic acid signalling was activated in healthy ripening berries along with the expression of proteins of the NBS-LRR superfamily and protein kinases, suggesting that the pathogen is able to shut down defences existing in healthy ripening berries. Furthermore, this study provided metabolic biomarkers of infection such as azelaic acid, a substance known to prime plant defence responses, arabitol, ribitol, 4-amino butanoic acid, 1-O-methyl- glucopyranoside, and several fatty acids that alone or in combination can be used to monitor Botrytis infection early in the vineyard.
Assuntos
Botrytis/fisiologia , Interações Hospedeiro-Patógeno , Metaboloma , Doenças das Plantas/microbiologia , Transcriptoma , Vitis/genética , Aciltransferases/genética , Aciltransferases/metabolismo , Frutas/genética , Frutas/metabolismo , Ácido Gálico/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poliaminas/metabolismo , Resveratrol , Estilbenos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vitis/metabolismo , Vitis/microbiologiaRESUMO
Black foot is an important disease of grapevines, which has in recent years been recorded with increased incidence and severity throughout the world, affecting grapevines both in nurseries and young vineyards. In the past the disease has been associated with infections by Ilyonectria macrodidyma, Ilyonectria liriodendri, Campylocarpon fasciculare, and Campylocarpon pseudofasciculare. Based on published data, a high level of genetic diversity was detected among isolates of I. macrodidyma. To resolve this issue, we employed a multigene analysis strategy (based on the ß-tubulin, histone H3, translation elongation factor 1-α, and the internal transcribed spacers on both sides of the 5.8S nuclear ribosomal RNA gene) along with morphological characterisation to study a collection of 81 I. macrodidyma-like isolates from grapevine and other hosts. Morphological characters (particularly conidial size) and molecular data (highest resolution achieved with histone H3 nucleotide sequence) enabled the distinction of six monophyletic species within the I. macrodidyma complex, four of which (Ilyonectria alcacerensis, Ilyonectria estremocensis, Ilyonectria novozelandica, and Ilyonectria torresensis) are described here. This work forms part of an effort by the International Council on Grapevine Trunk Diseases to resolve the species associated with black foot disease, which we believe will clarify their taxonomy, and therefore help researchers to devise control strategies to reduce the devastating impact of this disease.
Assuntos
Variação Genética , Hypocreales/classificação , Hypocreales/isolamento & purificação , Filogenia , Doenças das Plantas/microbiologia , Vitis/microbiologia , Análise por Conglomerados , DNA Fúngico/genética , Proteínas Fúngicas/genética , Genótipo , Hypocreales/citologia , Hypocreales/genética , Dados de Sequência Molecular , Análise de Sequência de DNARESUMO
Black foot disease is a serious disease of grapevine crops in most areas where vines are grown. Mainly two species of Cylindrocarpon, C. destructans and C. macrodidymum, are associated with this disease. Recent studies have revealed a tremendous molecular variation within the former but only slight molecular variation within the latter, indicating that C. destructans presents a complex of several species The present study elucidates the taxonomic status of C. destructans-like isolates associated with black foot disease of grapevines. Grapevine isolates were studied morphologically, subjected to DNA analyses of their ITS and partial beta-tubulin genes, and were mated in all combinations in vitro. Cylindrocarpon destructans strains isolated from grapevines in Europe and South Africa appeared morphologically and genetically identical, and had identical ITS and partial beta-tubulin gene sequences. Phylogenetic analyses placed these strains in a clade closely related but clearly distinct from other clades with C. destructans-like anamorphs obtained from various herbaceous or woody hosts. Only the ex-type strain of Cylindrocarpon liriodendri had identical sequences to strains isolated from grapevines, and could also not be distinguished by morphological characters. The grapevine isolates are therefore reidentified here as Cylindrocarpon liriodendri. Cylindrocarpn liriodendri formed perithecia in heterothallic conditions and the holomorph of this species is described as Neonectria liriodendri sp. nov. Neonectria liriodendri is genetically distinct from the ex-type strain of Neonectria radicicola, which originated from Cyclamen in Sweden. Both ex-type strains also differ from at least two other clades comprising additional C. destructans-like strains. Many of these strains originated from Panax sp., which is the host of the type of C. destructans. Our phylogenetic analyses indicate that C. destructans is not the anamorph of N. radicicola and that N. liriodendri, N. radicicola and several C. destructans-like taxa may have evolved independently within the same phylogenetic species complex.