Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Cell Rep ; 42(10): 113269, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37864797

RESUMO

Emerging evidence suggests that immune receptors may participate in many aging-related processes such as energy metabolism, inflammation, and cognitive decline. CD300f, a TREM2-like lipid-sensing immune receptor, is an exceptional receptor as it integrates activating and inhibitory cell-signaling pathways that modulate inflammation, efferocytosis, and microglial metabolic fitness. We hypothesize that CD300f can regulate systemic aging-related processes and ultimately healthy lifespan. We closely followed several cohorts of two strains of CD300f-/- and WT mice of both sexes for 30 months and observed an important reduction in lifespan and healthspan in knockout mice. This was associated with systemic inflammaging, increased cognitive decline, reduced brain glucose uptake observed by 18FDG PET scans, enrichment in microglial aging/neurodegeneration phenotypes, proteostasis alterations, senescence, increased frailty, and sex-dependent systemic metabolic changes. Moreover, the absence of CD300f altered macrophage immunometabolic phenotype. Taken together, we provide strong evidence suggesting that myeloid cell CD300f immune receptor contributes to healthy aging.


Assuntos
Disfunção Cognitiva , Envelhecimento Saudável , Masculino , Feminino , Camundongos , Animais , Macrófagos/metabolismo , Inflamação/metabolismo , Microglia/metabolismo , Camundongos Knockout , Disfunção Cognitiva/metabolismo
2.
Biol Methods Protoc ; 8(1): bpad013, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37521110

RESUMO

The house sparrow (Passer domesticus) is a valuable avian model for studying evolutionary genetics, development, neurobiology, physiology, behavior, and ecology, both in laboratory and field-based settings. The current annotation of the P. domesticus genome available at the Ensembl Rapid Release site is primarily focused on gene set building and lacks functional information. In this study, we present the first comprehensive functional reannotation of the P. domesticus genome using intestinal Illumina RNA sequencing (RNA-Seq) libraries. Our revised annotation provides an expanded view of the genome, encompassing 38592 transcripts compared to the current 23574 transcripts in Ensembl. We also predicted 14717 protein-coding genes, achieving 96.4% completeness for Passeriformes lineage BUSCOs. A substantial improvement in this reannotation is the accurate delineation of untranslated region (UTR) sequences. We identified 82.7% and 93.8% of the transcripts containing 5'- and 3'-UTRs, respectively. These UTR annotations are crucial for understanding post-transcriptional regulatory processes. Our findings underscore the advantages of incorporating additional specific RNA-Seq data into genome annotation, particularly when leveraging fast and efficient data processing capabilities. This functional reannotation enhances our understanding of the P. domesticus genome, providing valuable resources for future investigations in various research fields.

3.
Front Cell Infect Microbiol ; 13: 1187375, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424776

RESUMO

Introduction: Trypanosoma cruzi, the causative agent of Chagas disease, can infect almost any nucleated cell in the mammalian host. Although previous studies have described the transcriptomic changes that occur in host cells during parasite infection, the understanding of the role of post-transcriptional regulation in this process is limited. MicroRNAs, a class of short non-coding RNAs, are key players in regulating gene expression at the post-transcriptional level, and their involvement in the host-T. cruzi interplay is a growing area of research. However, to our knowledge, there are no comparative studies on the microRNA changes that occur in different cell types in response to T. cruzi infection. Methods and results: Here we investigated microRNA changes in epithelial cells, cardiomyocytes and macrophages infected with T. cruzi for 24 hours, using small RNA sequencing followed by careful bioinformatics analysis. We show that, although microRNAs are highly cell type-specific, a signature of three microRNAs -miR-146a, miR-708 and miR-1246, emerges as consistently responsive to T. cruzi infection across representative human cell types. T. cruzi lacks canonical microRNA-induced silencing mechanisms and we confirm that it does not produce any small RNA that mimics known host microRNAs. We found that macrophages show a broad response to parasite infection, while microRNA changes in epithelial and cardiomyocytes are modest. Complementary data indicated that cardiomyocyte response may be greater at early time points of infection. Conclusions: Our findings emphasize the significance of considering microRNA changes at the cellular level and complement previous studies conducted at higher organizational levels, such as heart samples. While miR-146a has been previously implicated in T. cruzi infection, similarly to its involvement in many other immunological responses, miR-1246 and miR-708 are demonstrated here for the first time. Given their expression in multiple cell types, we anticipate our work as a starting point for future investigations into their role in the post-transcriptional regulation of T. cruzi infected cells and their potential as biomarkers for Chagas disease.


Assuntos
Doença de Chagas , MicroRNAs , Trypanosoma cruzi , Animais , Humanos , Trypanosoma cruzi/genética , Doença de Chagas/parasitologia , Miócitos Cardíacos/metabolismo , Perfilação da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Mamíferos/genética
4.
Virus Res ; 322: 198929, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36126884

RESUMO

H9N2 avian influenza virus (AIV) has been isolated from various species of wild birds and domestic poultry worldwide. It has been reported since the late 1990s, that H9N2 AIV has infected humans as reported in some Asian and North African countries. This subtype has already been circulating and constituting a serious threat to the poultry industry in Tunisia back in 2009. To investigate zoonotic potential and pathogenicity of H9N2 AIV in chickens and mice in Tunisia, five strains have been isolated during the period from 2014 to 2018. Samples were withdrawn from several wild bird species and environment (Lagoon water) of Maamoura and Korba Lagoons as well as Kuriat Island. Phylogenetic analyzes demonstrated that the isolated H9N2 strains belonged to the G1-like sublineage and were close to AIV H9N2 poultry viruses from North Africa, West Africa and the Middle East. All strains carried in their hemagglutinin the residue 226 L, which is an important marker for avian-to-human viral transmission. The hemagglutinin cleavage site has several motifs: PSKSSR/G, PARSSR/G and HARSSR/G. The neuraminidase showed S372A and R403W substitutions that have been previously detected in H3N2 and H2N2 viruses that were reported in human pandemics. Many mutations associated with mammalian infections have been detected in internal proteins. Pathogenicity evaluation in chickens showed that GF/14 replicates effectively in the lungs, tracheas, spleens, kidneys and brains and that it was transmitted among contact chickens. However, GHG/18 replicates poorly in chickens and has not an efficient transmission in contact chickens. GF/14 and GHG/18 could not kill mice though they replicated in their respiratory tract and caused a significant body weight loss (p < 0.05). This study highlights the importance of H9N2 AIV monitoring in both migratory birds and the environment to prevent virus transmission to humans.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Doenças das Aves Domésticas , Animais , Humanos , Camundongos , Vírus da Influenza A Subtipo H9N2/genética , Filogenia , Vírus da Influenza A Subtipo H3N2 , Tunísia , Hemaglutininas , Água , Galinhas , Animais Selvagens , Aves Domésticas , Mamíferos
5.
Parasitol Res ; 121(4): 1155-1168, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35079857

RESUMO

Echinococcus multilocularis is the etiological agent of alveolar echinococcosis (AE), a serious parasitic disease in the Northern Hemisphere. The E. multilocularis primary cell cultivation system, together with E. multilocularis genome data and a range of pioneering molecular-based tools have advanced the research on this and other cestodes. RNA interference (RNAi) and microRNA knock-down have recently contributed to the study of the cellular and molecular basis of tapeworm development and host-parasite interaction. These, as well as other techniques, normally involve an electroporation step for the delivery of RNA, DNA, peptides, and small molecules into cells. Using transcriptome data and bioinformatic analyses, we herein report a genome-wide comparison between primary cells of E. multilocularis and primary cells under electroporated conditions after 48 h of culture. We observed that ~ 15% of genes showed a significant variation in expression level, including highly upregulated genes in electroporated cells, putatively involved in detoxification and membrane remodeling. Furthermore, we found genes related to carbohydrate metabolism, proteolysis, calcium ion binding and microtubule processing significantly altered, which could explain the cellular dispersion and the reduced formation of cellular aggregates observed during the first 48 h after electroporation.


Assuntos
Cestoides , Infecções por Cestoides , Equinococose , Echinococcus multilocularis , Animais , Equinococose/parasitologia , Echinococcus multilocularis/genética , Eletroporação , Cultura Primária de Células
6.
Rev. Nutr. (Online) ; 35: e220118, 2022. tab
Artigo em Inglês | LILACS | ID: biblio-1406916

RESUMO

ABSTRACT: Objective: To propose elements for the development of Food and Nutrition Education practices integrated to pedagogical activities for children. Methods: This is a qualitative case study, with participant observation and semi-structured interviews, carried out in a non-formal learning space, that is inspired in anthroposophy, Slow Food movement and Pikler approach. Participants were 13 children aged one to four years and three educators, and the data were interpreted by reflexive thematic analysis, using the Complex Thought as a theoretical framework. Results: The Food and Nutrition Education was consolidated in different pedagogical activities, such as cultivation practices, reverence in dealing with food, rituals and sharing, in an environmental and transdisciplinary approach. Conclusion: Nutrition education activities as part of a relationship with the environment and the planet, seen from a transdisciplinary perspective, is a differential in the formation of principles and values in early childhood education.


RESUMO: Objetivo: O artigo busca propor elementos para o desenvolvimento de práticas de Educação Alimentar e Nutricional integradas a atividades pedagógicas para crianças. Métodos: Trata-se de um estudo de caso qualitativo, com observação participante e entrevistas semiestruturadas realizadas em um espaço de educação não formal, inspirado na antroposofia no movimento slow food e na abordagem Pikler. Os participantes foram 13 crianças de 1 a 4 anos e três educadores e os dados foram interpretados por meio de análise temática reflexiva, tendo como referencial teórico o Pensamento Complexo. Resultados: A Educação Alimentar e Nutricional foi consolidada em diferentes atividades pedagógicas, como práticas de cultivo, reverência aos alimentos, rituais e partilha, em uma abordagem ambiental e transdisciplinar. Conclusão: As atividades de educação nutricional como parte da relação com o meio ambiente e o planeta, vistas de uma perspectiva transdisciplinar, são um diferencial na formação de princípios e valores na Educação Infantil.


Assuntos
Humanos , Masculino , Feminino , Lactente , Pré-Escolar , Adulto , Educação Alimentar e Nutricional , Educação Infantil , Modelos Educacionais , Pré-Escolar/educação , Medicina Antroposófica
7.
Front Microbiol ; 12: 751775, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721355

RESUMO

Mitochondria are vital organelles of eukaryotic cells, participating in key metabolic pathways such as cellular respiration, thermogenesis, maintenance of cellular redox potential, calcium homeostasis, cell signaling, and cell death. The phylum Apicomplexa is entirely composed of obligate intracellular parasites, causing a plethora of severe diseases in humans, wild and domestic animals. These pathogens include the causative agents of malaria, cryptosporidiosis, neosporosis, East Coast fever and toxoplasmosis, among others. The mitochondria in Apicomplexa has been put forward as a promising source of undiscovered drug targets, and it has been validated as the target of atovaquone, a drug currently used in the clinic to counter malaria. Apicomplexans present a single tubular mitochondria that varies widely both in structure and in genomic content across the phylum. The organelle is characterized by massive gene migrations to the nucleus, sequence rearrangements and drastic functional reductions in some species. Recent third generation sequencing studies have reignited an interest for elucidating the extensive diversity displayed by the mitochondrial genomes of apicomplexans and their intriguing genomic features. The underlying mechanisms of gene transcription and translation are also ill-understood. In this review, we present the state of the art on mitochondrial genome structure, composition and organization in the apicomplexan phylum revisiting topological and biochemical information gathered through classical techniques. We contextualize this in light of the genomic insight gained by second and, more recently, third generation sequencing technologies. We discuss the mitochondrial genomic and mechanistic features found in evolutionarily related alveolates, and discuss the common and distinct origins of the apicomplexan mitochondria peculiarities.

8.
Viruses ; 13(9)2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34578382

RESUMO

Uruguay controlled the viral dissemination during the first nine months of the SARS-CoV-2 pandemic. Unfortunately, towards the end of 2020, the number of daily new cases exponentially increased. Herein, we analyzed the country-wide genetic diversity of SARS-CoV-2 between November 2020 and April 2021. We identified that the most prevalent viral variant during the first epidemic wave in Uruguay (December 2020-February 2021) was a B.1.1.28 sublineage carrying Spike mutations Q675H + Q677H, now designated as P.6, followed by lineages P.2 and P.7. P.6 probably arose around November 2020, in Montevideo, Uruguay's capital department, and rapidly spread to other departments, with evidence of further local transmission clusters; it also spread sporadically to the USA and Spain. The more efficient dissemination of lineage P.6 with respect to P.2 and P.7 and the presence of mutations (Q675H and Q677H) in the proximity of the key cleavage site at the S1/S2 boundary suggest that P.6 may be more transmissible than other lineages co-circulating in Uruguay. Although P.6 was replaced by the variant of concern (VOC) P.1 as the predominant lineage in Uruguay since April 2021, the monitoring of the concurrent emergence of Q675H + Q677H in VOCs should be of worldwide interest.


Assuntos
COVID-19/virologia , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , COVID-19/transmissão , Genoma Viral , Humanos , Mutação , Filogeografia , Estudos Retrospectivos , SARS-CoV-2/patogenicidade , Uruguai
9.
Emerg Infect Dis ; 27(11): 2957-2960, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34437831

RESUMO

We developed a genomic surveillance program for real-time monitoring of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) in Uruguay. We report on a PCR method for SARS-CoV-2 VOCs, the surveillance workflow, and multiple independent introductions and community transmission of the SARS-CoV-2 P.1 VOC in Uruguay.


Assuntos
COVID-19 , SARS-CoV-2 , Genômica , Humanos , Uruguai/epidemiologia
10.
Blood ; 138(3): 246-258, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34292322

RESUMO

Most cancers become more dangerous by the outgrowth of malignant subclones with additional DNA mutations that favor proliferation or survival. Using chronic lymphocytic leukemia (CLL), a disease that exemplifies this process and is a model for neoplasms in general, we created transgenic mice overexpressing the enzyme activation-induced deaminase (AID), which has a normal function of inducing DNA mutations in B lymphocytes. AID not only allows normal B lymphocytes to develop more effective immunoglobulin-mediated immunity, but is also able to mutate nonimmunoglobulin genes, predisposing to cancer. In CLL, AID expression correlates with poor prognosis, suggesting a role for this enzyme in disease progression. Nevertheless, direct experimental evidence identifying the specific genes that are mutated by AID and indicating that those genes are associated with disease progression is not available. To address this point, we overexpressed Aicda in a murine model of CLL (Eµ-TCL1). Analyses of TCL1/AID mice demonstrate a role for AID in disease kinetics, CLL cell proliferation, and the development of cancer-related target mutations with canonical AID signatures in nonimmunoglobulin genes. Notably, our mouse models can accumulate mutations in the same genes that are mutated in human cancers. Moreover, some of these mutations occur at homologous positions, leading to identical or chemically similar amino acid substitutions as in human CLL and lymphoma. Together, these findings support a direct link between aberrant AID activity and CLL driver mutations that are then selected for their oncogenic effects, whereby AID promotes aggressiveness in CLL and other B-cell neoplasms.


Assuntos
Citidina Desaminase/genética , Regulação Leucêmica da Expressão Gênica , Leucemia Linfocítica Crônica de Células B/genética , Regulação para Cima , Animais , Modelos Animais de Doenças , Humanos , Leucemia Linfocítica Crônica de Células B/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação
11.
Front Cell Infect Microbiol ; 11: 692134, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34222052

RESUMO

Chagas Disease, caused by the protozoan parasite Trypanosoma cruzi, affects nearly eight million people in the world. T. cruzi is a complex taxon represented by different strains with particular characteristics, and it has the ability to infect and interact with almost any nucleated cell. The T. cruzi-host cell interactions will trigger molecular signaling cascades in the host cell that will depend on the particular cell type and T. cruzi strain, and also on many different experimental variables. In this review we collect data from multiple transcriptomic and functional studies performed in different infection models, in order to highlight key differences between works that in our opinion should be addressed when comparing and discussing results. In particular, we focus on changes in the respiratory chain and oxidative phosphorylation of host cells in response to infection, which depends on the experimental model of T. cruzi infection. Finally, we also discuss host cell responses which reiterate independently of the strain, cell type and experimental conditions.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Comunicação Celular , Interações Hospedeiro-Parasita , Humanos , Transdução de Sinais , Transcriptoma , Trypanosoma cruzi/genética
12.
Front Microbiol ; 12: 653986, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122369

RESUMO

Uruguay is one of the few countries in the Americas that successfully contained the coronavirus disease 19 (COVID-19) epidemic during the first half of 2020. Nevertheless, the intensive human mobility across the dry border with Brazil is a major challenge for public health authorities. We aimed to investigate the origin of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains detected in Uruguayan localities bordering Brazil as well as to measure the viral flux across this ∼1,100 km uninterrupted dry frontier. Using complete SARS-CoV-2 genomes from the Uruguayan-Brazilian bordering region and phylogeographic analyses, we inferred the virus dissemination frequency between Brazil and Uruguay and characterized local outbreak dynamics during the first months (May-July) of the pandemic. Phylogenetic analyses revealed multiple introductions of SARS-CoV-2 Brazilian lineages B.1.1.28 and B.1.1.33 into Uruguayan localities at the bordering region. The most probable sources of viral strains introduced to Uruguay were the Southeast Brazilian region and the state of Rio Grande do Sul. Some of the viral strains introduced in Uruguayan border localities between early May and mid-July were able to locally spread and originated the first outbreaks detected outside the metropolitan region. The viral lineages responsible for Uruguayan urban outbreaks were defined by a set of between four and 11 mutations (synonymous and non-synonymous) with respect to the ancestral B.1.1.28 and B.1.1.33 viruses that arose in Brazil, supporting the notion of a rapid genetic differentiation between SARS-CoV-2 subpopulations spreading in South America. Although Uruguayan borders have remained essentially closed to non-Uruguayan citizens, the inevitable flow of people across the dry border with Brazil allowed the repeated entry of the virus into Uruguay and the subsequent emergence of local outbreaks in Uruguayan border localities. Implementation of coordinated bi-national surveillance systems is crucial to achieve an efficient control of the SARS-CoV-2 spread across this kind of highly permeable borderland regions around the world.

13.
J Proteomics ; 223: 103804, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32422276

RESUMO

Cellular infection assays constitute essential tools to understand host-pathogen interactions, particularly for intracellular microorganisms that are produced in cell lines are needed to propagate the microorganism. In this work, we demonstrate that RNA derived from Vero cells is an important contaminant to consider in order to avoid false positive results in transcriptomic experiments. We study the cross-contamination on a Trypanosoma cruzi cell infection model, the etiological agent of Chagas disease. We implemented the most frequently used trypanosome-purification protocols and, for all of them, we detected RNAs derived from Vero cells in trypomastigote extracts. For some of the protocols we also detected Vero RNAs in infected human cells. We also found this type of contamination in microarray experiments of human samples infected with T. cruzi. Concerning Illumina RNA-Seq data, we found that the contamination with Vero cells is probably introducing spurious results. Finally, we recommend a protocol to purify trypomastigotes, which showed a high percentage of trypomastigote recovery and the absence of Vero contamination in infected human samples. Avoiding this type of contamination should be an important factor to consider during experimental design, in order to minimize false positive results in transcriptomic studies as well as RNA contamination in vaccine production. SIGNIFICANCE: Transcriptomic studies are widely used to understand host-pathogen interactions. When the pathogen is an intracellular microorganism, an additional mammalian cell system can be needed to propagate it. In this work we demonstrate that pathogens purified from infected monolayers can carry RNAs from these mammalian cells, and that this ambient RNA contamination is probably producing false positive results in subsequent transcriptomic studies performed with qRT-PCR, microarrays or Next Generation Sequencing.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Animais , Chlorocebus aethiops , Humanos , RNA , Transcriptoma , Trypanosoma cruzi/genética , Células Vero
14.
Arch Virol ; 165(7): 1527-1540, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32335769

RESUMO

During 2009-2012, several outbreaks of avian influenza virus H9N2 were reported in Tunisian poultry. The circulating strains carried in their hemagglutinins the human-like marker 226L, which is known to be important for avian-to-human viral transmission. To investigate the origins and zoonotic potential of the Tunisian H9N2 viruses, five new isolates were identified during 2012-2016 and their whole genomes were sequenced. Bayesian-based phylogeny showed that the HA, NA, M and NP segments belong to the G1-like lineage. The PB1, PB2, PA and NS segments appeared to have undergone multiple intersubtype reassortments and to be only distantly related to all of the Eurasian lineages (G1-like, Y280-like and Korean-like). The spatiotemporal dynamic of virus spread revealed that the H9N2 virus was transferred to Tunisia from the UAE through Asian and European pathways. As indicated by Bayesian analysis of host traits, ducks and terrestrial birds played an important role in virus transmission to Tunisia. The subtype phylodynamics showed that the history of the PB1 and PB2 segments was marked by intersubtype reassortments with H4N6, H10N4 and H2N2 subtypes. Most of these transitions between locations, hosts and subtypes were statistically supported (BF > 3) and not influenced by sampling bias. Evidence of genetic evolution was observed in the predicted amino acid sequences of the viral proteins of recent Tunisian H9N2 viruses, which were characterized by the acquisition of new mutations involved in virus adaptation to avian and mammalian hosts and amantadine resistance. This study is the first comprehensive analysis of the evolutionary history of Tunisian H9N2 viruses and highlights the zoonotic risk associated with their circulation in poultry, indicating the need for continuous surveillance of their molecular evolution.


Assuntos
Vírus da Influenza A Subtipo H9N2/genética , Influenza Aviária/virologia , Doenças das Aves Domésticas/virologia , Animais , Teorema de Bayes , Evolução Molecular , Genoma Viral , Humanos , Vírus da Influenza A Subtipo H9N2/classificação , Vírus da Influenza A Subtipo H9N2/isolamento & purificação , Influenza Aviária/epidemiologia , Influenza Humana/virologia , Filogenia , Aves Domésticas/virologia , Doenças das Aves Domésticas/epidemiologia , Tunísia/epidemiologia , Proteínas Virais/genética , Zoonoses/transmissão , Zoonoses/virologia
15.
Proc Natl Acad Sci U S A ; 117(12): 6651-6662, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32152116

RESUMO

A role for microglia in neuropsychiatric diseases, including major depressive disorder (MDD), has been postulated. Regulation of microglial phenotype by immune receptors has become a central topic in many neurological conditions. We explored preclinical and clinical evidence for the role of the CD300f immune receptor in the fine regulation of microglial phenotype and its contribution to MDD. We found that a prevalent nonsynonymous single-nucleotide polymorphism (C/T, rs2034310) of the human CD300f receptor cytoplasmic tail inhibits the protein kinase C phosphorylation of a threonine and is associated with protection against MDD, mainly in women. Interestingly, CD300f-/- mice displayed several characteristic MDD traits such as augmented microglial numbers, increased interleukin 6 and interleukin 1 receptor antagonist messenger RNA, alterations in synaptic strength, and noradrenaline-dependent and persistent depressive-like and anhedonic behaviors in females. This behavioral phenotype could be potentiated inducing the lipopolysaccharide depression model. RNA sequencing and biochemical studies revealed an association with impaired microglial metabolic fitness. In conclusion, we report a clear association that links the function of the CD300f immune receptor with MDD in humans, depressive-like and anhedonic behaviors in female mice, and altered microglial metabolic reprogramming.


Assuntos
Anedonia , Transtorno Depressivo Maior/patologia , Inflamação/etiologia , Microglia/patologia , Polimorfismo de Nucleotídeo Único , Receptores Imunológicos/genética , Receptores Imunológicos/fisiologia , Animais , Comportamento Animal , Estudos de Coortes , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Maior/psicologia , Feminino , Perfilação da Expressão Gênica , Humanos , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Sinapses
16.
PLoS Negl Trop Dis ; 13(12): e0007932, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31881019

RESUMO

Echinococcosis represents a major public health problem worldwide and is considered a neglected disease by the World Health Organization. The etiological agents are Echinococcus tapeworms, which display elaborate developmental traits that imply a complex control of gene expression. MicroRNAs (miRNAs), a class of small regulatory RNAs, are involved in the regulation of many biological processes such as development and metabolism. They act through the repression of messenger RNAs (mRNAs) usually by binding to the 3' untranslated region (3'UTR). Previously, we described the miRNome of several Echinococcus species and found that miRNAs are highly expressed in all life cycle stages, suggesting an important role in gene expression regulation. However, studying the role of miRNAs in helminth biology remains a challenge. To develop methodology for functional analysis of miRNAs in tapeworms, we performed miRNA knockdown experiments in primary cell cultures of Echinococcus multilocularis, which mimic the development of metacestode vesicles from parasite stem cells in vitro. First, we analysed the miRNA repertoire of E. multilocularis primary cells by small RNA-seq and found that miR-71, a bilaterian miRNA absent in vertebrate hosts, is one of the top five most expressed miRNAs. Using genomic information and bioinformatic algorithms for miRNA binding prediction, we found a high number of potential miR-71 targets in E. multilocularis. Inhibition of miRNAs can be achieved by transfection of antisense oligonucleotides (anti-miRs) that block miRNA function. To this end, we evaluated a variety of chemically modified anti-miRs for miR-71 knockdown. Electroporation of primary cells with 2'-O-methyl modified anti-miR-71 led to significantly reduced miR-71 levels. Transcriptomic analyses showed that several predicted miR-71 targets were up-regulated in anti-miR-treated primary cells, including genes potentially involved in parasite development, host parasite interaction, and several genes of as yet unknown function. Notably, miR-71-silenced primary cell cultures showed a strikingly different phenotype from control cells and did not develop into fully mature metacestodes. These findings indicate an important function of miR-71 in Echinococcus development and provide, for the first time, methodology to functionally study miRNAs in a tapeworm.


Assuntos
Echinococcus multilocularis/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/metabolismo , Animais , Células Cultivadas , Biologia Computacional , Células-Tronco/fisiologia
17.
Allergy ; 74(3): 507-517, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30040124

RESUMO

BACKGROUND: Asthma is a syndrome characterized by airway inflammation and obstruction. Due to its heterogeneity, the difficulties in asthma diagnosis and treatment make the discovery of new biomarkers a focus of research. So, we determined the differential miRNA expression of eosinophils between healthy and asthmatic patients and to establish a differentially expressed miRNA profile detectable in sera for use as biomarker. METHODS: MicroRNAs from peripheral eosinophils from healthy and asthmatic subjects were isolated and analyzed by next-generation sequencing and confirmed by quantitative PCR in 29 asthmatics and 10 healthy individuals. The levels of serum miRNAs were performed by quantitative PCR in 138 asthmatics and 39 healthy subjects. Regression analysis and Random Forest models were performed. RESULTS: We found a set of miRNAs whose expression differs between eosinophils from asthmatics and healthy subjects. These miRNAs can classify asthmatics into two clusters that differed in the number of eosinophils and periostin concentration in serum. Some of these miRNAs were also confirmed in sera, as miR-185-5p which discriminates asthmatics from healthy subjects. Together with other two miRNAs, miR-185-5p allowed us to create a logistic regression model to discriminate better both conditions and a Random Forest model that can even sort the asthmatics into intermittent, mild persistent, moderate persistent, and severe persistent asthma. CONCLUSION: Our data show that miRNAs profile in eosinophils can be used as asthma diagnosis biomarker in serum and that this profile is able to rank asthma severity.


Assuntos
Asma/diagnóstico , Asma/etiologia , Biomarcadores , Eosinófilos/imunologia , Eosinófilos/metabolismo , MicroRNAs/genética , Asma/sangue , Estudos de Casos e Controles , Biologia Computacional/métodos , Feminino , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Curva ROC , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Índice de Gravidade de Doença
18.
BMC Genomics ; 16: 879, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26511223

RESUMO

BACKGROUND: Among teleosts, the South American genus Austrolebias (Cyprinodontiformes: Rivulidae) includes 42 taxa of annual fishes divided into five different species groups. It is a monophyletic genus, but morphological and molecular data do not resolve the relationship among intrageneric clades and high rates of substitution have been previously described in some mitochondrial genes. In this work, the complete mitogenome of a species of the genus was determined for the first time. We determined its structure, gene order and evolutionary peculiar features, which will allow us to evaluate the performance of mitochondrial genes in the phylogenetic resolution at different taxonomic levels. RESULTS: Regarding gene content and order, the circular mitogenome of A. charrua (17,271 pb) presents the typical pattern of vertebrate mitogenomes. It contains the full complement of 13 proteins-coding genes, 22 tRNA, 2 rRNA and one non-coding control region. Notably, the tRNA-Cys was only 57 bp in length and lacks the D-loop arm. In three full sibling individuals, heteroplasmatic condition was detected due to a total of 12 variable sites in seven protein-coding genes. Among cyprinodontiforms, the mitogenome of A. charrua exhibits the lowest G+C content (37 %) and GCskew, as well as the highest strand asymmetry with a net difference of T over A at 1st and 3rd codon positions. Considering the 12 coding-genes of the H strand, correspondence analyses of nucleotide composition and codon usage show that A and T at 1st and 3rd codon positions have the highest weight in the first axis, and segregate annual species from the other cyprinodontiforms analyzed. Given the annual life-style, their mitogenomes could be under different selective pressures. All 13 protein-coding genes are under strong purifying selection and we did not find any significant evidence of nucleotide sites showing episodic selection (dN >dS) at annual lineages. When fast evolving third codon positions were removed from alignments, the "supergene" tree recovers our reference species phylogeny as well as the Cytb, ND4L and ND6 genes. Therefore, third codon positions seem to be saturated in the aforementioned coding regions at intergeneric Cyprinodontiformes comparisons. CONCLUSIONS: The complete mitogenome obtained in present work, offers relevant data for further comparative studies on molecular phylogeny and systematics of this taxonomic controversial endemic genus of annual fishes.


Assuntos
Ciprinodontiformes/genética , Genoma Mitocondrial/genética , Animais , Composição de Bases/genética , Ciprinodontiformes/fisiologia , Filogenia , RNA de Transferência/genética
19.
PLoS One ; 9(5): e97200, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24828673

RESUMO

Since the early 1980s remarkable progress has been made in understanding the role of the HER2 locus in carcinogenesis, but many details of its regulatory network are still elusive. We recently reported the finding of 367 new human microRNA (miRNA) genes of which one, mir-4728, is encoded in an intron of the HER2 gene. Here, we confirm that the HER2 oncogene is a bi-functional locus encoding the membrane receptor and a functional miRNA gene. We further show that miR-4728-3p has alternative functionalities depending on the region used for interaction with its target; the canonical seed between nucleotides 2-8 or a novel, more internal seed shifted to nucleotides 6-12. Analysis of public data shows that this internal seed region, although rare compared to the far more abundant canonical 2-8 seed interaction, can also direct targeted down-regulation by other miRNAs. Through the internal seed, miR-4728-3p regulates expression of estrogen receptor alpha, an interaction that would have remained undetected if classic rules for miRNA-target interaction had been applied. In summary, we present here an alternative mode of miRNA regulation and demonstrate this dual function of the HER2 locus, linking the two major biomarkers in breast cancer.


Assuntos
Receptor alfa de Estrogênio/genética , MicroRNAs/genética , Receptor ErbB-2/genética , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Regulação para Baixo/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Nucleotídeos/genética
20.
Genome Announc ; 1(4)2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23908278

RESUMO

Campylobacter fetus subsp. venerealis is the causative agent of bovine genital campylobacteriosis, a sexually transmitted disease distributed worldwide. Campylobacter fetus subsp. venerealis biovar Intermedius strains differ in their biochemical behavior and are prevalent in some countries. We report the first genome sequence for this biovar, isolated from bull prepuce.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA