Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 930: 172765, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38692323

RESUMO

The presence of contaminated sites/soils in or near cities can pose significant risks to public health. The city of Viviez (France) was taken in reference site bears significant industrial responsibility, particularly in zinc metallurgy, with the presence of a now rehabilitated smelter. This has led to soil contamination by zinc (Zn), lead (Pb), arsenic (As), and cadmium (Cd), with concentrations reaching up to 4856 mg kg-1, 1739 mg kg-1, 195 mg kg-1, and 110 mg kg-1, respectively. The aim of this study is to comprehend the contamination patterns of the site post-rehabilitation, the geochemical behavior of each element, and their speciation (analyzed through BCR, XRD, and XANES) in relation to associated health risks due to metals accessibility for oral ingestion and inhalation by the local population. The findings revealed that elements inducing health risks were not necessarily those with the highest metal contents. All results are discussed in terms of the relationship between element speciation, stability of bearing phases, and their behavior in different media. XANES is an important tool to determine and estimate the Pb-bearing phases in garden soils, as well as the As speciation, which consist of Pb-goethite, anglesite, and Pb-humate, with variations in proportions (the main phases being 66 %, 12 % and 22 % for Pb-goethite, anglesite, and Pb-humate, respectively) whereas As-bearing phase are As(V)-rich ferrihydrite-like. A new aspect lies in the detailed characterization of solid phases before and after bioaccessibility tests, to qualify and quantify the bearing phases involved in the mobility of metallic elements to understand the bioaccessibility behavior. Ultimately, the health risk associated with exposure to inhabitants, in terms of particle ingestion and inhalation, was assessed. Only ingestion-related risk was deemed unacceptable due to the levels of As and Pb.


Assuntos
Monitoramento Ambiental , Poluentes do Solo , Poluentes do Solo/análise , França , Humanos , Arsênio/análise , Síncrotrons , Pulmão , Chumbo/análise , Zinco/análise , Metais Pesados/análise , Disponibilidade Biológica , Medição de Risco , Cádmio/análise , Solo/química
2.
J Synchrotron Radiat ; 29(Pt 6): 1436-1445, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36345752

RESUMO

Skin reactions are well described complications of tattooing, usually provoked by red inks. Chemical characterizations of these inks are usually based on limited subjects and techniques. This study aimed to determine the organic and inorganic composition of inks using X-ray fluorescence spectroscopy (XRF), X-ray absorption spectroscopy (XANES) and Raman spectroscopy, in a cohort of patients with cutaneous hypersensitivity reactions to tattoo. A retrospective multicenter study was performed, including 15 patients diagnosed with skin reactions to tattoos. Almost half of these patients developed skin reactions on black inks. XRF identified known allergenic metals - titanium, chromium, manganese, nickel and copper - in almost all cases. XANES spectroscopy distinguished zinc and iron present in ink from these elements in endogenous biomolecules. Raman spectroscopy showed the presence of both reported (azo pigments, quinacridone) and unreported (carbon black, phtalocyanine) putative organic sensitizer compounds, and also defined the phase in which Ti was engaged. To the best of the authors' knowledge, this paper reports the largest cohort of skin hypersensitivity reactions analyzed by multiple complementary techniques. With almost half the patients presenting skin reaction on black tattoo, the study suggests that black modern inks should also be considered to provoke skin reactions, probably because of the common association of carbon black with potential allergenic metals within these inks. Analysis of more skin reactions to tattoos is needed to identify the relevant chemical compounds and help render tattoo ink composition safer.


Assuntos
Tatuagem , Humanos , Tatuagem/efeitos adversos , Tinta , Fuligem , Análise Espectral Raman/métodos , Espectrometria por Raios X
3.
J Synchrotron Radiat ; 29(Pt 1): 180-193, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34985435

RESUMO

One of the challenges of all synchrotron facilities is to offer the highest performance detectors for all their specific experiments, in particular for X-ray diffraction imaging and its high throughput data collection. In that context, the DiffAbs beamline, the Detectors and the Design and Engineering groups at Synchrotron SOLEIL, in collaboration with ImXPAD and Cegitek companies, have developed an original and unique detector with a circular shape. This detector is based on the hybrid pixel photon-counting technology and consists of the specific assembly of 20 hybrid pixel array detector (XPAD) modules. This article aims to demonstrate the main characteristics of the CirPAD (for Circular Pixel Array Detector) and its performance - i.e. excellent pixel quality, flat-field correction, high-count-rate performance, etc. Additionally, the powder X-ray diffraction pattern of an LaB6 reference sample is presented and refined. The obtained results demonstrate the high quality of the data recorded from the CirPAD, which allows the proposal of its use to all scientific communities interested in performing experiments at the DiffAbs beamline.

4.
Environ Sci Pollut Res Int ; 29(12): 17373-17381, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34668135

RESUMO

Anglesite (PbSO4) is a lead sulfate that belongs to the barite group and is naturally ubiquitous in the environment. This work describes a simple way to synthesize crystalline lead sulfate by using a straightforward hydrothermal procedure. Typically, Pb(NO3)2 and Fe2(SO4)3 precursors were mixed and heated at 94 °C for 24 h. The synthesized samples have been characterized by coupling X-Ray diffraction (XRD) to spectroscopic methods (FTIR and micro-Raman), X-ray absorption spectroscopy (XAS), and electronic microscopy (SEM and TEM). In fine, the results about this new well crystalline synthetic anglesite confirm the efficiency and the importance of this cheap protocol and the synthesized phases obtained. Moreover, the environmental stability and bioaccessibility of anglesite have been done to evaluate environmental stability of anglesite under various physico-chemical conditions and sanitary risks. Finally, the paper allows to obtain precise data on a pure phase in order to be able to more easily evaluate and understand the role of anglesite in as-polluted sites and soils.


Assuntos
Solo , Espectroscopia por Absorção de Raios X
5.
J R Soc Interface ; 17(169): 20200216, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32842887

RESUMO

Fossils, including those that occasionally preserve decay-prone soft tissues, are mostly made of minerals. Accessing their chemical composition provides unique insight into their past biology and/or the mechanisms by which they preserve, leading to a series of developments in chemical and elemental imaging. However, the mineral composition of fossils, particularly where soft tissues are preserved, is often only inferred indirectly from elemental data, while X-ray diffraction that specifically provides phase identification received little attention. Here, we show the use of synchrotron radiation to generate not only X-ray fluorescence elemental maps of a fossil, but also mineralogical maps in transmission geometry using a two-dimensional area detector placed behind the fossil. This innovative approach was applied to millimetre-thick cross-sections prepared through three-dimensionally preserved fossils, as well as to compressed fossils. It identifies and maps mineral phases and their distribution at the microscale over centimetre-sized areas, benefitting from the elemental information collected synchronously, and further informs on texture (preferential orientation), crystallite size and local strain. Probing such crystallographic information is instrumental in defining mineralization sequences, reconstructing the fossilization environment and constraining preservation biases. Similarly, this approach could potentially provide new knowledge on other (bio)mineralization processes in environmental sciences. We also illustrate that mineralogical contrasts between fossil tissues and/or the encasing sedimentary matrix can be used to visualize hidden anatomies in fossils.


Assuntos
Fósseis , Síncrotrons , Radiografia , Difração de Raios X , Raios X
6.
Commun Biol ; 2: 280, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31372519

RESUMO

Coleoidea (squids and octopuses) comprise all crown group cephalopods except the Nautilida. Coleoids are characterized by internal shell (endocochleate), ink sac and arm hooks, while nautilids lack an ink sac, arm hooks, suckers, and have an external conch (ectocochleate). Differentiating between straight conical conchs (orthocones) of Palaeozoic Coleoidea and other ectocochleates is only possible when rostrum (shell covering the chambered phragmocone) and body chamber are preserved. Here, we provide information on how this internalization might have evolved. We re-examined one of the oldest coleoids, Gordoniconus beargulchensis from the Early Carboniferous of the Bear Gulch Fossil-Lagerstätte (Montana) by synchrotron, various lights and Reflectance Transformation Imaging (RTI). This revealed previously unappreciated anatomical details, on which we base evolutionary scenarios of how the internalization and other evolutionary steps in early coleoid evolution proceeded. We suggest that conch internalization happened rather suddenly including early growth stages while the ink sac evolved slightly later.


Assuntos
Evolução Biológica , Fósseis , Moluscos/anatomia & histologia , Moluscos/classificação , Animais , Filogenia
7.
J Synchrotron Radiat ; 24(Pt 5): 991-999, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28862621

RESUMO

The new rapid scan method, Flyscan mode, implemented on the DiffAbs beamline at Synchrotron SOLEIL, allows fast micro-X-ray fluorescence data acquisition. It paves the way for applications in the biomedical field where a large amount of data is needed to generate meaningful information for the clinician. This study presents a complete set of data acquired after injection of gold-cluster-enriched mesoporous silica nanospheres, used as potential theranostic vectors, into rats. While classical X-ray fluorescence investigations (using step-by-step acquisitions) are based on a limited number of samples (approximately one per day at the DiffAbs beamline), the Flyscan mode has enabled gathering information on the interaction of nanometer-scale vectors in different organs such as liver, spleen and kidney at the micrometer scale, for five rats, in only a single five-day synchrotron shift. Moreover, numerous X-ray absorption near-edge structure spectra, which are beam-time-consuming taking into account the low concentration of these theranostic vectors, were collected.

8.
Sci Rep ; 7: 40373, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-28106049

RESUMO

Food-grade titanium dioxide (TiO2) containing a nanoscale particle fraction (TiO2-NPs) is approved as a white pigment (E171 in Europe) in common foodstuffs, including confectionary. There are growing concerns that daily oral TiO2-NP intake is associated with an increased risk of chronic intestinal inflammation and carcinogenesis. In rats orally exposed for one week to E171 at human relevant levels, titanium was detected in the immune cells of Peyer's patches (PP) as observed with the TiO2-NP model NM-105. Dendritic cell frequency increased in PP regardless of the TiO2 treatment, while regulatory T cells involved in dampening inflammatory responses decreased with E171 only, an effect still observed after 100 days of treatment. In all TiO2-treated rats, stimulation of immune cells isolated from PP showed a decrease in Thelper (Th)-1 IFN-γ secretion, while splenic Th1/Th17 inflammatory responses sharply increased. E171 or NM-105 for one week did not initiate intestinal inflammation, while a 100-day E171 treatment promoted colon microinflammation and initiated preneoplastic lesions while also fostering the growth of aberrant crypt foci in a chemically induced carcinogenesis model. These data should be considered for risk assessments of the susceptibility to Th17-driven autoimmune diseases and to colorectal cancer in humans exposed to TiO2 from dietary sources.


Assuntos
Colo/imunologia , Colo/patologia , Alimentos , Homeostase , Sistema Imunitário/imunologia , Lesões Pré-Cancerosas/patologia , Titânio/química , Administração Oral , Animais , Carcinogênese/metabolismo , Carcinogênese/patologia , Contagem de Células , Separação Celular , Citocinas/metabolismo , Dano ao DNA , Células Dendríticas/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Inflamação/patologia , Fígado/metabolismo , Fígado/patologia , Masculino , Permeabilidade , Nódulos Linfáticos Agregados/patologia , Ratos Wistar , Frações Subcelulares/metabolismo , Linfócitos T/imunologia , Distribuição Tecidual , Titânio/administração & dosagem
9.
Langmuir ; 31(29): 8168-75, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26125282

RESUMO

Beside its promising applications in the design of multifunctional materials, batteries and biosensors, the pigment Prussian blue is still studied in heritage science because of its capricious fading behavior due to a complex light-induced redox mechanism. We studied model heritage materials composed of Prussian blue embedded into a cellulosic fiber substrate by means of X-ray absorption near-edge spectroscopy. Significant X-ray radiation damage was observed and characterized. X-ray radiation induced first a reduction of Prussian blue, in a similar way to what visible light does, followed by a complete degradation of the pigment and the formation of iron(III) oxyhydroxide. We took advantage of this X-ray photochemistry to investigate in depth the redox behavior of Prussian blue. We could particularly demonstrate that the rate, extent, and quality of Prussian blue photoreduction can be tuned by modifying the pH and alkali cation content of the cellulosic substrate. The present study represents a step further in the understanding of Prussian blue heritage materials from an electrochemical viewpoint and provides evidence of substrate-mediated photochemistry applicable to a wider class of Prussian blue composite materials.

10.
J Phys Chem B ; 115(29): 9160-7, 2011 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-21675783

RESUMO

The structure of AF-ZrF(4) system (A(+) = Li(+), Na(+), K(+)) compounds in the liquid state is studied using an approach combining EXAFS spectroscopy with molecular dynamics simulations. A very good agreement is observed between the two techniques, which allows us to propose a quantitative description of the liquids. From the Zr(4+) solvation shell point of view, we observe a progressive stabilization of the 7-fold and then of the 6-fold coordinated complexes when passing from Li(+) to Na(+) and K(+) as a "counterion". Particular attention is given to the systems consisting of 35 mol % of ZrF(4). At that particular composition, the ZrF(6)(2-) complex predominates largely whatever the nature of the alkali. The calculated vibrational properties of this complex are in excellent agreement with a previous Raman spectroscopy experiment on molten KF-ZrF(4). The most important differences are observed for the lifetime of these octahedral units, which increases importantly with the size of the monovalent cation. On a larger scale, an intense first sharp diffraction peak is observed for the Zr(4+)-Zr(4+) partial structure factor, which can be attributed to the correlations between the octahedral units formed.

11.
J Synchrotron Radiat ; 18(Pt 3): 475-80, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21525657

RESUMO

Calcium (Ca(2+))-containing crystals (CCs), including basic Ca(2+) phosphate (BCP) and Ca(2+) pyrophosphate dihydrate (CPPD) crystals, are associated with severe forms of osteoarthritis (OA). Growing evidence supports a role for abnormal articular cartilage mineralization in the pathogenesis of OA. However, the role of Ca(2+) compounds in this mineralization process remains poorly understood. Six patients, who underwent total knee joint replacement for primary OA, have been considered in this study. Cartilage from femoral condyles and tibial plateaus in the medial and lateral compartments was collected as 1 mm-thick slices cut tangentially to the articular surface. First, CCs presence and biochemical composition were assessed using Fourier transform infrared spectroscopy (FT-IR). Next, Ca(2+) compound biochemical form was further assessed using X-ray absorption spectroscopy (XAS) performed at the Ca(2+) K-absorption edge. Overall, 12 cartilage samples were assessed. Using FT-IR, BCP and CPPD crystals were detected in four and three out of 12 samples, respectively. Ca(2+) compound biochemical forms differed between areas with versus without CCs, when compared using XAS. The complete set of data shows that XANES spectroscopy can be used to accurately characterize sparse CCs in human OA cartilage. It is found that Ca(2+) compounds differ between calcified and non-calcified cartilage areas. In calcified areas they appear to be mainly involved in calcifications, namely Ca(2+) crystals.


Assuntos
Calcinose , Cartilagem Articular/fisiopatologia , Articulação do Joelho/fisiopatologia , Osteoartrite/fisiopatologia , Espectroscopia por Absorção de Raios X/métodos , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier
12.
J Synchrotron Radiat ; 17(3): 374-9, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20400836

RESUMO

At the surface of attached kidney stones, a particular deposit termed Randall's plaque (RP) serves as a nucleus. This structural particularity as well as other major public health problems such as diabetes type-2 may explain the dramatic increase in urolithiasis now affecting up to 20% of the population in the industrialized countries. Regarding the chemical composition, even if other phosphate phases such as whitlockite or brushite can be found as minor components (less than 5%), calcium phosphate apatite as well as amorphous carbonated calcium phosphate (ACCP) are the major components of most RPs. Through X-ray absorption spectroscopy performed at the Ca K-absorption edge, a technique specific to synchrotron radiation, the presence and crystallinity of the Ca phosphate phases present in RP were determined ex vivo. The sensitivity of the technique was used as well as the fact that the measurements can be performed directly on the papilla. The sample was stored in formol. Moreover, a first mapping of the chemical phase from the top of the papilla to the deep medulla is obtained. Direct structural evidence of the presence of ACCP as a major constituent is given for the first time. This set of data, coherent with previous studies, shows that this chemical phase can be considered as one precursor in the genesis of RP.


Assuntos
Cálcio/análise , Cálculos Renais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral/métodos , Raios X
13.
Biochimie ; 91(10): 1294-300, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19497348

RESUMO

The role of oligo-elements such as Zn in the genesis of pathological calcifications is widely debated in the literature. An essential element of discussion is given by their localisation either at the surface or within the Ca apatite crystalline network. To determine the localisation, X-ray absorption experiments have been performed at SOLEIL. The Exafs results suggest that Zn atoms, present in the Zn(2+) form, are bound to about 4 O atoms at a distance of 2.00 A, while the interatomic distance R(CaO) ranges between 2.35 A and 2.71 A. Taking into account the content of Zn (around 1000 ppm) and the difference in ionic radius between Zn(2+) (0.074 nm) and Ca(2+) (0.099 nm), a significant longer interatomic distance would be expected in the case of Zn replacing Ca within the apatite crystalline network. We thus conclude that Zn atoms are localised at the surface and not in the apatite nanocrystal structure. Such structural result has essential biological implications for at least two reasons. Some oligoelements have a marked effect on the transformation of chemical phases, and may modify the morphology of crystals. These are both major issues because, in the case of kidney stones, the medical treatment depends strongly on the precise chemical phase and on the morphology of the biological entities at both macroscopic and mesoscopic scales.


Assuntos
Absorciometria de Fóton/métodos , Apatitas/química , Cálculos Renais/química , Zinco/química , Absorção , Calcinose , Humanos
14.
J Synchrotron Radiat ; 15(Pt 5): 506-9, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18728322

RESUMO

This very first report of an X-ray absorption spectroscopy experiment at Synchrotron SOLEIL is part of a long-term study dedicated to pathological calcifications. Such biological entities composed of various inorganic and/or organic compounds also contain trace elements. In the case of urinary calculi, different papers already published have pointed out that these oligo-elements may promote or inhibit crystal nucleation as well as growth of mineral. Use of this analytical tool specific to synchrotron radiation, allowing the determination of the local environment of oligo-elements and thus their occupation site, contributes to the understanding of the role of trace elements in pathological calcifications.


Assuntos
Calcinose , Minerais/análise , Oligoelementos/análise , Cálculos Urinários/química , Zinco/química , Apatitas/análise , Humanos , Análise Espectral/métodos , Síncrotrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA