Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Semin Thromb Hemost ; 50(7): 998-1011, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38547918

RESUMO

Inflammation contributes to the development of thrombosis, but the mechanistic basis for this association remains poorly understood. Innate immune responses and coagulation pathways are activated in parallel following infection or injury, and represent an important host defense mechanism to limit pathogen spread in the bloodstream. However, dysregulated proinflammatory activity is implicated in the progression of venous thromboembolism and arterial thrombosis. In this review, we focus on the role of myeloid cells in propagating thromboinflammation in acute inflammatory conditions, such as sepsis and coronavirus disease 2019 (COVID-19), and chronic inflammatory conditions, such as obesity, atherosclerosis, and inflammatory bowel disease. Myeloid cells are considered key drivers of thromboinflammation via upregulated tissue factor activity, formation of neutrophil extracellular traps (NETs), contact pathway activation, and aberrant coagulation factor-mediated protease-activated receptor (PAR) signaling. We discuss how strategies to target the intersection between myeloid cell-mediated inflammation and activation of blood coagulation represent an exciting new approach to combat immunothrombosis. Specifically, repurposed anti-inflammatory drugs, immunometabolic regulators, and NETosis inhibitors present opportunities that have the potential to dampen immunothrombotic activity without interfering with hemostasis. Such therapies could have far-reaching benefits for patient care across many thromboinflammatory conditions.


Assuntos
COVID-19 , Células Mieloides , SARS-CoV-2 , Humanos , COVID-19/imunologia , Células Mieloides/imunologia , Células Mieloides/metabolismo , SARS-CoV-2/imunologia , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Tromboinflamação/imunologia , Trombose/imunologia , Inflamação/imunologia , Sepse/imunologia
2.
J Thromb Haemost ; 22(2): 394-409, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37865288

RESUMO

BACKGROUND: Myeloid cell metabolic reprogramming is a hallmark of inflammatory disease; however, its role in inflammation-induced hypercoagulability is poorly understood. OBJECTIVES: We aimed to evaluate the role of inflammation-associated metabolic reprogramming in regulating blood coagulation. METHODS: We used novel myeloid cell-based global hemostasis assays and murine models of immunometabolic disease. RESULTS: Glycolysis was essential for enhanced activated myeloid cell tissue factor expression and decryption, driving increased cell-dependent thrombin generation in response to inflammatory challenge. Similarly, inhibition of glycolysis enhanced activated macrophage fibrinolytic activity through reduced plasminogen activator inhibitor 1 activity. Macrophage polarization or activation markedly increased endothelial protein C receptor (EPCR) expression on monocytes and macrophages, leading to increased myeloid cell-dependent protein C activation. Importantly, inflammation-dependent EPCR expression on tissue-resident macrophages was also observed in vivo. Adipose tissue macrophages from obese mice fed a high-fat diet exhibited significantly enhanced EPCR expression and activated protein C generation compared with macrophages isolated from the adipose tissue of healthy mice. Similarly, the induction of colitis in mice prompted infiltration of EPCR+ innate myeloid cells within inflamed colonic tissue that were absent from the intestinal tissue of healthy mice. CONCLUSION: Collectively, this study identifies immunometabolic regulation of myeloid cell hypercoagulability, opening new therapeutic possibilities for targeted mitigation of thromboinflammatory disease.


Assuntos
Proteína C , Trombofilia , Animais , Camundongos , Proteína C/metabolismo , Receptor de Proteína C Endotelial/metabolismo , Células Mieloides/metabolismo , Inflamação/metabolismo , Trombofilia/etiologia , Glicólise , Camundongos Endogâmicos C57BL
4.
Nat Commun ; 14(1): 3513, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316487

RESUMO

Excessive inflammation-associated coagulation is a feature of infectious diseases, occurring in such conditions as bacterial sepsis and COVID-19. It can lead to disseminated intravascular coagulation, one of the leading causes of mortality worldwide. Recently, type I interferon (IFN) signaling has been shown to be required for tissue factor (TF; gene name F3) release from macrophages, a critical initiator of coagulation, providing an important mechanistic link between innate immunity and coagulation. The mechanism of release involves type I IFN-induced caspase-11 which promotes macrophage pyroptosis. Here we find that F3 is a type I IFN-stimulated gene. Furthermore, F3 induction by lipopolysaccharide (LPS) is inhibited by the anti-inflammatory agents dimethyl fumarate (DMF) and 4-octyl itaconate (4-OI). Mechanistically, inhibition of F3 by DMF and 4-OI involves suppression of Ifnb1 expression. Additionally, they block type I IFN- and caspase-11-mediated macrophage pyroptosis, and subsequent TF release. Thereby, DMF and 4-OI inhibit TF-dependent thrombin generation. In vivo, DMF and 4-OI suppress TF-dependent thrombin generation, pulmonary thromboinflammation, and lethality induced by LPS, E. coli, and S. aureus, with 4-OI additionally attenuating inflammation-associated coagulation in a model of SARS-CoV-2 infection. Our results identify the clinically approved drug DMF and the pre-clinical tool compound 4-OI as anticoagulants that inhibit TF-mediated coagulopathy via inhibition of the macrophage type I IFN-TF axis.


Assuntos
COVID-19 , Interferon Tipo I , Trombose , Humanos , Anticoagulantes , Tromboplastina , Fumarato de Dimetilo/farmacologia , Fumarato de Dimetilo/uso terapêutico , Escherichia coli , Inflamação , Lipopolissacarídeos , Staphylococcus aureus , Trombina , SARS-CoV-2 , Macrófagos , Caspases
5.
J Thromb Haemost ; 20(10): 2429-2438, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35875995

RESUMO

BACKGROUND: Prolonged recovery is common after acute SARS-CoV-2 infection; however, the pathophysiological mechanisms underpinning Long COVID syndrome remain unknown. VWF/ADAMTS-13 imbalance, dysregulated angiogenesis, and immunothrombosis are hallmarks of acute COVID-19. We hypothesized that VWF/ADAMTS-13 imbalance persists in convalescence together with endothelial cell (EC) activation and angiogenic disturbance. Additionally, we postulate that ongoing immune cell dysfunction may be linked to sustained EC and coagulation activation. PATIENTS AND METHODS: Fifty patients were reviewed at a minimum of 6 weeks following acute COVID-19. ADAMTS-13, Weibel Palade Body (WPB) proteins, and angiogenesis-related proteins were assessed and clinical evaluation and immunophenotyping performed. Comparisons were made with healthy controls (n = 20) and acute COVID-19 patients (n = 36). RESULTS: ADAMTS-13 levels were reduced (p = 0.009) and the VWF-ADAMTS-13 ratio was increased in convalescence (p = 0.0004). Levels of platelet factor 4 (PF4), a putative protector of VWF, were also elevated (p = 0.0001). A non-significant increase in WPB proteins Angiopoietin-2 (Ang-2) and Osteoprotegerin (OPG) was observed in convalescent patients and WPB markers correlated with EC parameters. Enhanced expression of 21 angiogenesis-related proteins was observed in convalescent COVID-19. Finally, immunophenotyping revealed significantly elevated intermediate monocytes and activated CD4+ and CD8+ T cells in convalescence, which correlated with thrombin generation and endotheliopathy markers, respectively. CONCLUSION: Our data provide insights into sustained EC activation, dysregulated angiogenesis, and VWF/ADAMTS-13 axis imbalance in convalescent COVID-19. In keeping with the pivotal role of immunothrombosis in acute COVID-19, our findings support the hypothesis that abnormal T cell and monocyte populations may be important in the context of persistent EC activation and hemostatic dysfunction during convalescence.


Assuntos
COVID-19 , Hemostáticos , Proteína ADAMTS13 , Angiopoietina-2 , COVID-19/complicações , Convalescença , Humanos , Neovascularização Patológica , Osteoprotegerina , Fator Plaquetário 4 , SARS-CoV-2 , Trombina , Fator de von Willebrand/metabolismo , Síndrome de COVID-19 Pós-Aguda
6.
Curr Opin Hematol ; 29(5): 251-258, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35852855

RESUMO

PURPOSE OF REVIEW: To provide an overview of the state-of-the-art in protein C (PC) pathway research. RECENT FINDINGS: The PC pathway is crucial for maintaining hemostasis to prevent venous thromboembolism. This is evident from genetic mutations that result in impaired PC pathway activity and contribute to increased venous thromboembolism risk in affected individuals. In addition to its anticoagulant role, activated PC (APC) also mediates a complex, pleiotropic role in the maintenance of vascular cell health, which it achieves via anti-inflammatory and antiapoptotic cell signaling on endothelial cells. Emerging data have demonstrated that cell signaling by APC, mediated by multiple receptor interactions on different cell types, also confers cytoprotective and anti-inflammatory benefits. Defects in both arms of the PC pathway are associated with increased susceptibility to thrombo-inflammatory disease in various preclinical thrombotic, proinflammatory and neurological disease models. Moreover, recent studies have identified attenuation of anticoagulant PC pathway activity as an exciting therapeutic opportunity to promote hemostasis in patients with inherited or acquired bleeding disorders. SUMMARY: In this review, we provide an overview of some recent developments in our understanding of the PC pathways.


Assuntos
Proteína C , Tromboembolia Venosa , Anticoagulantes/metabolismo , Anticoagulantes/uso terapêutico , Células Endoteliais/metabolismo , Humanos , Proteína C/metabolismo , Transdução de Sinais , Tromboembolia Venosa/tratamento farmacológico , Tromboembolia Venosa/genética
7.
J Thromb Haemost ; 19(10): 2546-2553, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34375505

RESUMO

BACKGROUND: Persistent symptoms including breathlessness, fatigue, and decreased exercise tolerance have been reported in patients after acute SARS-CoV-2 infection. The biological mechanisms underlying this "long COVID" syndrome remain unknown. However, autopsy studies have highlighted the key roles played by pulmonary endotheliopathy and microvascular immunothrombosis in acute COVID-19. OBJECTIVES: To assess whether endothelial cell activation may be sustained in convalescent COVID-19 patients and contribute to long COVID pathogenesis. PATIENTS AND METHODS: Fifty patients were reviewed at a median of 68 days following SARS-CoV-2 infection. In addition to clinical workup, acute phase markers, endothelial cell (EC) activation and NETosis parameters and thrombin generation were assessed. RESULTS: Thrombin generation assays revealed significantly shorter lag times (p < .0001, 95% CI -2.57 to -1.02 min), increased endogenous thrombin potential (p = .04, 95% CI 15-416 nM/min), and peak thrombin (p < .0001, 95% CI 39-93 nM) in convalescent COVID-19 patients. These prothrombotic changes were independent of ongoing acute phase response or active NETosis. Importantly, EC biomarkers including von Willebrand factor antigen (VWF:Ag), VWF propeptide (VWFpp), and factor VIII were significantly elevated in convalescent COVID-19 compared with controls (p = .004, 95% CI 0.09-0.57 IU/ml; p = .009, 95% CI 0.06-0.5 IU/ml; p = .04, 95% CI 0.03-0.44 IU/ml, respectively). In addition, plasma soluble thrombomodulin levels were significantly elevated in convalescent COVID-19 (p = .02, 95% CI 0.01-2.7 ng/ml). Sustained endotheliopathy was more frequent in older, comorbid patients, and those requiring hospitalization. Finally, both plasma VWF:Ag and VWFpp levels correlated inversely with 6-min walk tests. CONCLUSIONS: Collectively, our findings demonstrate that sustained endotheliopathy is common in convalescent COVID-19 and raise the intriguing possibility that this may contribute to long COVID pathogenesis.


Assuntos
COVID-19 , Idoso , Biomarcadores , COVID-19/complicações , Humanos , SARS-CoV-2 , Fator de von Willebrand , Síndrome de COVID-19 Pós-Aguda
8.
Semin Thromb Hemost ; 47(2): 183-191, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33636749

RESUMO

People with hemophilia (PWH) have an increased tendency to bleed, often into their joints, causing debilitating joint disease if left untreated. To reduce the incidence of bleeding events, PWH receive prophylactic replacement therapy with recombinant factor VIII (FVIII) or FIX. Bleeding events in PWH are typically proportional to their plasma FVIII or IX levels; however, in many PWH, bleeding tendency and the likelihood of developing arthropathy often varies independently of endogenous factor levels. Consequently, many PWH suffer repeated bleeding events before correct dosing of replacement factor can be established. Diagnostic approaches to define an individual's bleeding tendency remain limited. Multiple modulators of bleeding phenotype in PWH have been proposed, including the type of disease-causing variant, age of onset of bleeding episodes, plasma modifiers of blood coagulation or clot fibrinolysis pathway activity, interindividual differences in platelet reactivity, and endothelial anticoagulant activity. In this review, we summarize current knowledge of established factors modulating bleeding tendency and discuss emerging concepts of additional biological elements that may contribute to variable bleeding tendency in PWH. Finally, we consider how variance in responses to new gene therapies may also necessitate consideration of patient-specific tailoring of treatment. Cumulatively, these studies highlight the need to reconsider the current "one size fits all" approach to treatment regimens for PWH and consider therapies guided by the bleeding phenotype of each individual PWH at the onset of therapy. Further characterization of the biological bases of bleeding heterogeneity in PWH, combined with the development of novel diagnostic assays to identify those factors that modulate bleeding risk in PWH, will be required to meet these aspirations.


Assuntos
Hemofilia A/complicações , Hemorragia/etiologia , Artropatias/terapia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA