Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Signal Transduct Target Ther ; 9(1): 199, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39117617

RESUMO

High frequencies of stem-like memory T cells in infusion products correlate with superior patient outcomes across multiple T cell therapy trials. Herein, we analyzed a published CRISPR activation screening to identify transcriptional regulators that could be harnessed to augment stem-like behavior in CD8+ T cells. Using IFN-γ production as a proxy for CD8+ T cell terminal differentiation, LMO4 emerged among the top hits inhibiting the development of effectors cells. Consistently, we found that Lmo4 was downregulated upon CD8+ T cell activation but maintained under culture conditions facilitating the formation of stem-like T cells. By employing a synthetic biology approach to ectopically express LMO4 in antitumor CD8+ T cells, we enabled selective expansion and enhanced persistence of transduced cells, while limiting their terminal differentiation and senescence. LMO4 overexpression promoted transcriptional programs regulating stemness, increasing the numbers of stem-like CD8+ memory T cells and enhancing their polyfunctionality and recall capacity. When tested in syngeneic and xenograft tumor models, LMO4 overexpression boosted CD8+ T cell antitumor immunity, resulting in enhanced tumor regression. Rather than directly modulating gene transcription, LMO4 bound to JAK1 and potentiated STAT3 signaling in response to IL-21, inducing the expression of target genes (Tcf7, Socs3, Junb, and Zfp36) crucial for memory responses. CRISPR/Cas9-deletion of Stat3 nullified the enhanced memory signature conferred by LMO4, thereby abrogating the therapeutic benefit of LMO4 overexpression. These results establish LMO4 overexpression as an effective strategy to boost CD8+ T cell stemness, providing a new synthetic biology tool to bolster the efficacy of T cell-based immunotherapies.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Linfócitos T CD8-Positivos , Proteínas com Domínio LIM , Fator de Transcrição STAT3 , Transdução de Sinais , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/imunologia , Linfócitos T CD8-Positivos/imunologia , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/imunologia , Fator de Transcrição STAT3/metabolismo , Camundongos , Animais , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Humanos , Transdução de Sinais/imunologia , Transdução de Sinais/genética , Interleucinas/genética , Interleucinas/imunologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia
2.
Nat Commun ; 15(1): 5693, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972954

RESUMO

Leukemias with ambiguous lineage comprise several loosely defined entities, often without a clear mechanistic basis. Here, we extensively profile the epigenome and transcriptome of a subgroup of such leukemias with CpG Island Methylator Phenotype. These leukemias exhibit comparable hybrid myeloid/lymphoid epigenetic landscapes, yet heterogeneous genetic alterations, suggesting they are defined by their shared epigenetic profile rather than common genetic lesions. Gene expression enrichment reveals similarity with early T-cell precursor acute lymphoblastic leukemia and a lymphoid progenitor cell of origin. In line with this, integration of differential DNA methylation and gene expression shows widespread silencing of myeloid transcription factors. Moreover, binding sites for hematopoietic transcription factors, including CEBPA, SPI1 and LEF1, are uniquely inaccessible in these leukemias. Hypermethylation also results in loss of CTCF binding, accompanied by changes in chromatin interactions involving key transcription factors. In conclusion, epigenetic dysregulation, and not genetic lesions, explains the mixed phenotype of this group of leukemias with ambiguous lineage. The data collected here constitute a useful and comprehensive epigenomic reference for subsequent studies of acute myeloid leukemias, T-cell acute lymphoblastic leukemias and mixed-phenotype leukemias.


Assuntos
Ilhas de CpG , Metilação de DNA , Epigênese Genética , Redes Reguladoras de Genes , Humanos , Metilação de DNA/genética , Ilhas de CpG/genética , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/genética , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Fator de Ligação a CCCTC/metabolismo , Fator de Ligação a CCCTC/genética , Regulação Leucêmica da Expressão Gênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cromatina/metabolismo , Cromatina/genética , Masculino , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Feminino , Hematopoese/genética , Criança , Transcriptoma , Proteínas Proto-Oncogênicas , Transativadores
3.
Cell Rep ; : 114498, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39084219

RESUMO

Cohesin shapes the chromatin architecture, including enhancer-promoter interactions. Its components, especially STAG2, but not its paralog STAG1, are frequently mutated in myeloid malignancies. To elucidate the underlying mechanisms of leukemogenesis, we comprehensively characterized genetic, transcriptional, and chromatin conformational changes in acute myeloid leukemia (AML) patient samples. Specific loci displayed altered cohesin occupancy, gene expression, and local chromatin activation, which were not compensated by the remaining STAG1-cohesin. These changes could be linked to disrupted spatial chromatin looping in cohesin-mutated AMLs. Complementary depletion of STAG2 or STAG1 in primary human hematopoietic progenitors (HSPCs) revealed effects resembling STAG2-mutant AML-specific changes following STAG2 knockdown, not invoked by the depletion of STAG1. STAG2-deficient HSPCs displayed impaired differentiation capacity and maintained HSPC-like gene expression. This work establishes STAG2 as a key regulator of chromatin contacts, gene expression, and differentiation in the hematopoietic system and identifies candidate target genes that may be implicated in human leukemogenesis.

4.
Immunity ; 57(8): 1975-1993.e10, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39047731

RESUMO

Tissue adaptation is required for regulatory T (Treg) cell function within organs. Whether this program shares aspects with other tissue-localized immune populations is unclear. Here, we analyzed single-cell chromatin accessibility data, including the transposable element (TE) landscape of CD45+ immune cells from colon, skin, adipose tissue, and spleen. We identified features of organ-specific tissue adaptation across different immune cells. Focusing on tissue Treg cells, we found conservation of the Treg tissue adaptation program in other tissue-localized immune cells, such as amphiregulin-producing T helper (Th)17 cells. Accessible TEs can act as regulatory elements, but their contribution to tissue adaptation is not understood. TE landscape analysis revealed an enrichment of specific transcription factor binding motifs in TE regions within accessible chromatin peaks. TEs, specifically from the LTR family, were located in enhancer regions and associated with tissue adaptation. These findings broaden our understanding of immune tissue residency and provide an important step toward organ-specific immune interventions.


Assuntos
Cromatina , Elementos de DNA Transponíveis , Análise de Célula Única , Linfócitos T Reguladores , Animais , Cromatina/metabolismo , Cromatina/genética , Linfócitos T Reguladores/imunologia , Elementos de DNA Transponíveis/genética , Camundongos , Especificidade de Órgãos/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Camundongos Endogâmicos C57BL , Humanos
5.
Commun Biol ; 7(1): 879, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39025930

RESUMO

In clinical situations, peripheral blood accessible CD3+CD4+CXCR5+ T-follicular helper (TFH) cells may have to serve as a surrogate indicator for dysregulated germinal center responses in tissues. To determine the heterogeneity of TFH cells in peripheral blood versus tonsils, CD3+CD4+CD45RA-CXCR5+ cells of both origins were sorted. Transcriptomes, TCR repertoires and cell-surface protein expression were analysed by single-cell RNA sequencing, flow cytometry and immunohistochemistry. Reassuringly, all blood-circulating CD3+CD4+CXCR5+ T-cell subpopulations also appear in tonsils, there with some supplementary TFH characteristics, while peripheral blood-derived TFH cells display markers of proliferation and migration. Three further subsets of TFH cells, however, with bona fide T-follicular gene expression patterns, are exclusively found in tonsils. One additional, distinct and oligoclonal CD4+CXCR5+ subpopulation presents pronounced cytotoxic properties. Those 'killer TFH (TFK) cells' can be discovered in peripheral blood as well as among tonsillar cells but are located predominantly outside of germinal centers. They appear terminally differentiated and can be distinguished from all other TFH subsets by expression of NKG7 (TIA-1), granzymes, perforin, CCL5, CCR5, EOMES, CRTAM and CX3CR1. All in all, this study provides data for detailed CD4+CXCR5+ T-cell assessment of clinically available blood samples and extrapolation possibilities to their tonsil counterparts.


Assuntos
Tonsila Palatina , Receptores CXCR5 , Humanos , Tonsila Palatina/imunologia , Tonsila Palatina/metabolismo , Tonsila Palatina/citologia , Receptores CXCR5/metabolismo , Receptores CXCR5/genética , Fenótipo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Masculino , Feminino , Adulto
6.
Proc Natl Acad Sci U S A ; 121(25): e2312499121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38857395

RESUMO

Ex vivo expansion of human CD34+ hematopoietic stem and progenitor cells remains a challenge due to rapid differentiation after detachment from the bone marrow niche. In this study, we assessed the capacity of an inducible fusion protein to enable sustained ex vivo proliferation of hematopoietic precursors and their capacity to differentiate into functional phagocytes. We fused the coding sequences of an FK506-Binding Protein 12 (FKBP12)-derived destabilization domain (DD) to the myeloid/lymphoid lineage leukemia/eleven nineteen leukemia (MLL-ENL) fusion gene to generate the fusion protein DD-MLL-ENL and retrovirally expressed the protein switch in human CD34+ progenitors. Using Shield1, a chemical inhibitor of DD fusion protein degradation, we established large-scale and long-term expansion of late monocytic precursors. Upon Shield1 removal, the cells lost self-renewal capacity and spontaneously differentiated, even after 2.5 y of continuous ex vivo expansion. In the absence of Shield1, stimulation with IFN-γ, LPS, and GM-CSF triggered terminal differentiation. Gene expression analysis of the obtained phagocytes revealed marked similarity with naïve monocytes. In functional assays, the novel phagocytes migrated toward CCL2, attached to VCAM-1 under shear stress, produced reactive oxygen species, and engulfed bacterial particles, cellular particles, and apoptotic cells. Finally, we demonstrated Fcγ receptor recognition and phagocytosis of opsonized lymphoma cells in an antibody-dependent manner. Overall, we have established an engineered protein that, as a single factor, is useful for large-scale ex vivo production of human phagocytes. Such adjustable proteins have the potential to be applied as molecular tools to produce functional immune cells for experimental cell-based approaches.


Assuntos
Diferenciação Celular , Fagócitos , Humanos , Fagócitos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Leucemia/genética , Leucemia/patologia , Leucemia/metabolismo , Engenharia de Proteínas/métodos , Fagocitose
7.
Nat Commun ; 15(1): 3224, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622133

RESUMO

The adoptive transfer of regulatory T cells is a promising strategy to prevent graft-versus-host disease after allogeneic bone marrow transplantation. Here, we use a major histocompatibility complex-mismatched mouse model to follow the fate of in vitro expanded donor regulatory T cells upon migration to target organs. Employing comprehensive gene expression and repertoire profiling, we show that they retain their suppressive function and plasticity after transfer. Upon entering non-lymphoid tissues, donor regulatory T cells acquire organ-specific gene expression profiles resembling tissue-resident cells and activate hallmark suppressive and cytotoxic pathways, most evidently in the colon, when co-transplanted with graft-versus-host disease-inducing conventional T cells. Dominant T cell receptor clonotypes overlap between organs and across recipients and their relative abundance correlates with protection efficacy. Thus, this study reveals donor regulatory T cell selection and adaptation mechanisms in target organs and highlights protective features of Treg to guide the development of improved graft-versus-host disease prevention strategies.


Assuntos
Doença Enxerto-Hospedeiro , Linfócitos T Reguladores , Camundongos , Animais , Linfócitos T Reguladores/transplante , Transplante Homólogo , Transplante de Medula Óssea , Doença Enxerto-Hospedeiro/prevenção & controle , Camundongos Endogâmicos C57BL
8.
J Exp Med ; 221(2)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38226976

RESUMO

CD8 T lymphocytes are classically viewed as cytotoxic T cells. Whether human CD8 T cells can, in parallel, induce a tissue regeneration program is poorly understood. Here, antigen-specific assay systems revealed that human CD8 T cells not only mediated cytotoxicity but also promoted tissue remodeling. Activated CD8 T cells could produce the epidermal growth factor receptor (EGFR)-ligand amphiregulin (AREG) and sensitize epithelial cells for enhanced regeneration potential. Blocking the EGFR or the effector cytokines IFN-γ and TNF could inhibit tissue remodeling. This regenerative program enhanced tumor spheroid and stem cell-mediated organoid growth. Using single-cell gene expression analysis, we identified an AREG+, tissue-resident CD8 T cell population in skin and adipose tissue from patients undergoing abdominal wall or abdominoplasty surgery. These tissue-resident CD8 T cells showed a strong TCR clonal relation to blood PD1+TIGIT+ CD8 T cells with tissue remodeling abilities. These findings may help to understand the complex CD8 biology in tumors and could become relevant for the design of therapeutic T cell products.


Assuntos
Linfócitos T CD8-Positivos , Linfócitos T Citotóxicos , Humanos , Receptores ErbB , Tecido Adiposo , Ciclo Celular
9.
Haematologica ; 109(8): 2500-2514, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38235501

RESUMO

D-2-hydroxyglutarate (D-2-HG) accumulates in patients with acute myeloid leukemia (AML) with mutated isocitrate dehydrogenase (IDH) and in other malignancies. D-2-HG suppresses antitumor T-cell immunity but little is known about potential effects on non-malignant myeloid cells. Here we show that D-2-HG impairs human but not murine dendritic cell differentiation, resulting in a tolerogenic phenotype with low major histocompatibility class II expression. In line with this, IDH-mutated AML blasts exhibited lower expression of HLA-DP and were less susceptible to lysis by HLA-DP-specific T cells. Interestingly, besides its expected impact on DNA demethylation, D-2-HG reprogrammed metabolism towards increased lactate production in dendritic cells and AML. Vitamin C accelerated DNA demethylation, but only the combination of vitamin C and glycolytic inhibition lowered lactate levels and supported major histocompatibility complex class II expression. Our results indicate an unexpected link between the immunosuppressive metabolites 2-HG and lactic acid and suggest a potentially novel therapeutic strategy with combinations of anti-glycolytic drugs and epigenetic modulators (hypomethylating agents) or other therapeutics for the treatment of AML.


Assuntos
Células Dendríticas , Glutaratos , Antígenos de Histocompatibilidade Classe II , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/patologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/efeitos dos fármacos , Glutaratos/metabolismo , Glutaratos/farmacologia , Camundongos , Animais , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Fenótipo , Diferenciação Celular/efeitos dos fármacos , Ácido Láctico/metabolismo , Tolerância Imunológica/efeitos dos fármacos , Isocitrato Desidrogenase/genética
10.
Cell Rep Med ; 4(11): 101249, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37883975

RESUMO

The isocitrate dehydrogenase (IDH) gene is recurrently mutated in adult diffuse gliomas. IDH-mutant gliomas are categorized into oligodendrogliomas and astrocytomas, each with unique pathological features. Here, we use single-nucleus RNA and ATAC sequencing to compare the molecular heterogeneity of these glioma subtypes. In addition to astrocyte-like, oligodendrocyte progenitor-like, and cycling tumor subpopulations, a tumor population enriched for ribosomal genes and translation elongation factors is primarily present in oligodendrogliomas. Longitudinal analysis of astrocytomas indicates that the proportion of tumor subpopulations remains stable in recurrent tumors. Analysis of tumor-associated microglia/macrophages (TAMs) reveals significant differences between oligodendrogliomas, with astrocytomas harboring inflammatory TAMs expressing phosphorylated STAT1, as confirmed by immunohistochemistry. Furthermore, inferred receptor-ligand interactions between tumor subpopulations and TAMs may contribute to TAM state diversity. Overall, our study sheds light on distinct tumor populations, TAM heterogeneity, TAM-tumor interactions in IDH-mutant glioma subtypes, and the relative stability of tumor subpopulations in recurrent astrocytomas.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioma , Oligodendroglioma , Humanos , Oligodendroglioma/genética , Oligodendroglioma/patologia , Neoplasias Encefálicas/genética , Microglia/patologia , Mutação , Recidiva Local de Neoplasia/genética , Glioma/genética , Glioma/patologia , Astrocitoma/genética , Isocitrato Desidrogenase/genética
11.
EMBO J ; 42(19): e114162, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37641864

RESUMO

Within the virion, adenovirus DNA associates with the virus-encoded, protamine-like structural protein pVII. Whether this association is organized, and how genome packaging changes during infection and subsequent transcriptional activation is currently unclear. Here, we combined RNA-seq, MNase-seq, ChIP-seq, and single genome imaging during early adenovirus infection to unveil the structure- and time-resolved dynamics of viral chromatin changes as well as their correlation with gene transcription. Our MNase mapping data indicates that the adenoviral genome is arranged in precisely positioned nucleoprotein particles with nucleosome-like characteristics, that we term adenosomes. We identified 238 adenosomes that are positioned by a DNA sequence code and protect about 60-70 bp of DNA. The incoming adenoviral genome is more accessible at early gene loci that undergo additional chromatin de-condensation upon infection. Histone H3.3 containing nucleosomes specifically replaces pVII at distinct genomic sites and at the transcription start sites of early genes. Acetylation of H3.3 is predominant at the transcription start sites and precedes transcriptional activation. Based on our results, we propose a central role for the viral pVII nucleoprotein architecture, which is required for the dynamic structural changes during early infection, including the regulation of nucleosome assembly prior to transcription initiation. Our study thus may aid the rational development of recombinant adenoviral vectors exhibiting sustained expression in gene therapy.


Assuntos
Cromatina , Nucleossomos , Nucleossomos/genética , Ativação Transcricional , Cromatina/genética , DNA/metabolismo , Montagem e Desmontagem da Cromatina , Adenoviridae/genética
12.
Medicine (Baltimore) ; 102(32): e34597, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37565910

RESUMO

Genome wide association studies have identified numerous single nucleotide polymorphisms (SNPs) associated with obesity, yet effect sizes of individual SNPs are small. Therefore, the aim of our study was to investigate whether a genetic risk score (GRS) comprising risk alleles of SNPs identified in the GIANT consortium meta-analyses shows association with body mass index (BMI) and other BMI related metabolic alterations in a cohort with an extreme phenotype. Genotyping of 93 SNPs was performed in 314 obese individuals (mean BMI 40.5 ± 7.8 kg/m², aged 45 ± 12 years), participating in a standardized weight reduction program, and in 74 lean controls (mean BMI 24.6 ± 3.3 kg/m², aged 41.7 ± 13.4 years). Allele numbers of all 93 SNPs were added to a GRS. Anthropometric parameters, parameters of glucose/insulin and lipid metabolism were assessed standardized after a 12 hours fast. GRS was significantly different between controls and obese individuals (unweighted GRS: 86.6 vs 89.0, P = .002; weighted GRS: 84.9 vs 88.3, P = .005). Furthermore, linear regression analysis showed significant associations of GRS with BMI ( P < .0001), weight ( P = .0005), waist circumference ( P = .0039), fat mass ( P < .0001) and epicardial fat thickness ( P = .0032), yet with small effect sizes ( r ² < 0.06). In conclusion, in our study GRS could differentiate between extreme obese and lean individuals, and was associated with BMI and its related traits, yet with small effect sizes.


Assuntos
Obesidade Mórbida , Humanos , Obesidade Mórbida/genética , Obesidade Mórbida/complicações , Índice de Massa Corporal , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença , Obesidade/genética , Obesidade/complicações , Fatores de Risco , Polimorfismo de Nucleotídeo Único , Genótipo
13.
Front Oncol ; 13: 1120194, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36741028

RESUMO

Introduction: Glutamine deficiency is a well-known feature of the tumor environment. Here we analyzed the impact of glutamine deprivation on human myeloid cell survival and function. Methods: Different types of myeloid cells were cultured in the absence or presence of glutamine and/or with L-methionine-S-sulfoximine (MSO), an irreversible glutamine synthetase (GS) inhibitor. GS expression was analyzed on mRNA and protein level. GS activity and the conversion of glutamate to glutamine by myeloid cells was followed by 13C tracing analyses. Results: The absence of extracellular glutamine only slightly affected postmitotic human monocyte to dendritic cell (DC) differentiation, function and survival. Similar results were obtained for monocyte-derived macrophages. In contrast, proliferation of the monocytic leukemia cell line THP-1 was significantly suppressed. While macrophages exhibited high constitutive GS expression, glutamine deprivation induced GS in DC and THP-1. Accordingly, proliferation of THP-1 was rescued by addition of the GS substrate glutamate and 13C tracing analyses revealed conversion of glutamate to glutamine. Supplementation with the GS inhibitor MSO reduced the survival of DC and macrophages and counteracted the proliferation rescue of THP-1 by glutamate. Discussion: Our results show that GS supports myeloid cell survival in a glutamine poor environment. Notably, in addition to suppressing proliferation and survival of tumor cells, the blockade of GS also targets immune cells such as DCs and macrophages.

14.
Proc Natl Acad Sci U S A ; 119(40): e2208436119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161919

RESUMO

Engineered regulatory T cell (Treg cell) therapy is a promising strategy to treat patients suffering from inflammatory diseases, autoimmunity, and transplant rejection. However, in many cases, disease-related antigens that can be targeted by Treg cells are not available. In this study, we introduce a class of synthetic biosensors, named artificial immune receptors (AIRs), for murine and human Treg cells. AIRs consist of three domains: (a) extracellular binding domain of a tumor necrosis factor (TNF)-receptor superfamily member, (b) intracellular costimulatory signaling domain of CD28, and (c) T cell receptor signaling domain of CD3-ζ chain. These AIR receptors equip Treg cells with an inflammation-sensing machinery and translate this environmental information into a CD3-ζ chain-dependent TCR-activation program. Different AIRs were generated, recognizing the inflammatory ligands of the TNF-receptor superfamily, including LIGHT, TNFα, and TNF-like ligand 1A (TL1A), leading to activation, differentiation, and proliferation of AIR-Treg cells. In a graft-versus-host disease model, Treg cells expressing lymphotoxin ß receptor-AIR, which can be activated by the ligand LIGHT, protect significantly better than control Treg cells. Expression and signaling of the corresponding human AIR in human Treg cells prove that this concept can be translated. Engineering Treg cells that target inflammatory ligands leading to TCR signaling and activation might be used as a Treg cell-based therapy approach for a broad range of inflammation-driven diseases.


Assuntos
Técnicas Biossensoriais , Engenharia Celular , Terapia Baseada em Transplante de Células e Tecidos , Inflamação , Linfócitos T Reguladores , Animais , Antígenos CD28/metabolismo , Humanos , Inflamação/terapia , Ligantes , Receptor beta de Linfotoxina/metabolismo , Camundongos , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Linfócitos T Reguladores/transplante , Fator de Necrose Tumoral alfa
15.
Nat Commun ; 13(1): 4301, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879286

RESUMO

Cohesin is a major structural component of mammalian genomes and is required to maintain loop structures. While acute depletion in short-term culture models suggests a limited importance of cohesin for steady-state transcriptional circuits, long-term studies are hampered by essential functions of cohesin during replication. Here, we study genome architecture in a postmitotic differentiation setting, the differentiation of human blood monocytes (MO). We profile and compare epigenetic, transcriptome and 3D conformation landscapes during MO differentiation (either into dendritic cells or macrophages) across the genome and detect numerous architectural changes, ranging from higher level compartments down to chromatin loops. Changes in loop structures correlate with cohesin-binding, as well as epigenetic and transcriptional changes during differentiation. Functional studies show that the siRNA-mediated depletion of cohesin (and to a lesser extent also CTCF) markedly disturbs loop structures and dysregulates genes and enhancers that are primarily regulated during normal MO differentiation. In addition, gene activation programs in cohesin-depleted MO-derived macrophages are disturbed. Our findings implicate an essential function of cohesin in controlling long-term, differentiation- and activation-associated gene expression programs.


Assuntos
Cromatina , Monócitos , Animais , Fator de Ligação a CCCTC/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , Humanos , Mamíferos/genética , Monócitos/metabolismo , Coesinas
16.
J Immunother Cancer ; 10(5)2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35606086

RESUMO

BACKGROUND: Cancer immunotherapeutic strategies showed unprecedented results in the clinic. However, many patients do not respond to immuno-oncological treatments due to the occurrence of a plethora of immunological obstacles, including tumor intrinsic mechanisms of resistance to cytotoxic T-cell (TC) attack. Thus, a deeper understanding of these mechanisms is needed to develop successful immunotherapies. METHODS: To identify novel genes that protect tumor cells from effective TC-mediated cytotoxicity, we performed a genetic screening in pancreatic cancer cells challenged with tumor-infiltrating lymphocytes and antigen-specific TCs. RESULTS: The screening revealed 108 potential genes that protected tumor cells from TC attack. Among them, salt-inducible kinase 3 (SIK3) was one of the strongest hits identified in the screening. Both genetic and pharmacological inhibitions of SIK3 in tumor cells dramatically increased TC-mediated cytotoxicity in several in vitro coculture models, using different sources of tumor and TCs. Consistently, adoptive TC transfer of TILs led to tumor growth inhibition of SIK3-depleted cancer cells in vivo. Mechanistic analysis revealed that SIK3 rendered tumor cells susceptible to tumor necrosis factor (TNF) secreted by tumor-activated TCs. SIK3 promoted nuclear factor kappa B (NF-κB) nuclear translocation and inhibited caspase-8 and caspase-9 after TNF stimulation. Chromatin accessibility and transcriptome analyses showed that SIK3 knockdown profoundly impaired the expression of prosurvival genes under the TNF-NF-κB axis. TNF stimulation led to SIK3-dependent phosphorylation of the NF-κB upstream regulators inhibitory-κB kinase and NF-kappa-B inhibitor alpha on the one side, and to inhibition of histone deacetylase 4 on the other side, thus sustaining NF-κB activation and nuclear stabilization. A SIK3-dependent gene signature of TNF-mediated NF-κB activation was found in a majority of pancreatic cancers where it correlated with increased cytotoxic TC activity and poor prognosis. CONCLUSION: Our data reveal an abundant molecular mechanism that protects tumor cells from cytotoxic TC attack and demonstrate that pharmacological inhibition of this pathway is feasible.


Assuntos
NF-kappa B , Fator de Necrose Tumoral alfa , Apoptose , Humanos , NF-kappa B/metabolismo , Fosforilação , Linfócitos T/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
17.
Scand J Immunol ; 95(5): e13146, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35073416

RESUMO

1,25-dihydroxyvitamin D3 (1,25(OH)2 D3 ), the active metabolite of vitamin D3 has a strong impact on the differentiation and function of immune cells. Here we analysed the influence of its precursor 25-hydroxyvitamin D3 (25(OH)D3 ) on the differentiation of human CD4+ T cells applying physiological concentrations in vitro. Our data show that 25(OH)D3 is converted to its active form 1,25(OH)2 D3 by T cells, which in turn supports FOXP3, CD25 and CTLA-4 expression and inhibits IFN-γ production. These changes were not reflected in the demethylation of the respective promoters. Furthermore, we investigated the impact of vitamin D3 metabolites under induced Treg (iTreg) polarization conditions using TGF-ß. Surprisingly, no additive effect but a decreased percentage of FOXP3 expressing cells was observed. However, the combination of 25(OH)D3 or 1,25(OH)2 D3 together with TGF-ß further upregulated CD25 and CTLA-4 and significantly increased soluble CTLA-4 and IL-10 secretion whereas IFN-γ expression of iTreg was decreased. Our data suggest that physiological levels of 25(OH)D3 act as potent modulator of human CD4+ T cells and autocrine or paracrine production of 1,25(OH)2 D3 by T cells might be crucial for the local regulation of an adaptive immune response. However, since no epigenetic changes are detected by 25(OH)D3 a rather transient phenotype is induced.


Assuntos
Calcifediol , Colecalciferol , Antígeno CTLA-4/genética , Antígeno CTLA-4/metabolismo , Calcifediol/metabolismo , Colecalciferol/farmacologia , Epigênese Genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Fenótipo , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Linfócitos T Reguladores , Fator de Crescimento Transformador beta/metabolismo , Vitamina D/análogos & derivados
18.
Int J Cancer ; 150(4): 617-625, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34591983

RESUMO

A distinct group of colorectal carcinomas (CRCs) referred to as the "CpG island methylator phenotype" (CIMP) shows an extremely high incidence of de novo DNA methylation and may share common pathological, clinical or molecular features. However, there is limited consensus about which CpG islands (CGIs) define a CIMP, particularly in microsatellite stable (MSS) carcinomas. To study this phenotype in a systematic manner, we analyzed genome-wide CGI DNA methylation profiles of 19 MSS CRC using methyl-CpG immunoprecipitation (MCIp) and hybridization on 244K CGI oligonucleotide microarrays, determined KRAS and BRAF mutation status and compared disease-related DNA methylation changes to chromosomal instability as detected by microarray-based comparative genomic hybridization. Results were validated using mass spectrometry analysis of bisulfite-converted DNA at a subset of 76 individual CGIs in 120 CRC and 43 matched normal tissue samples. Both genome-wide profiling and CpG methylation fine mapping segregated a group of CRC showing pronounced and frequent de novo DNA methylation of a distinct group of CGIs that only partially overlapped with previously established classifiers. The CIMP group defined in our study revealed significant association with colon localization, either KRAS or BRAF mutation, and mostly minor chromosomal losses but no association with known histopathological features. Our data provide a basis for defining novel marker panels that may enable a more reliable classification of CIMP in all CRCs, independently of the MS status.


Assuntos
Neoplasias Colorretais/genética , Ilhas de CpG , Metilação de DNA , Instabilidade de Microssatélites , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais , Variações do Número de Cópias de DNA , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo
19.
J Clin Invest ; 131(22)2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34779418

RESUMO

Metabolic pathways regulate immune responses and disrupted metabolism leads to immune dysfunction and disease. Coronavirus disease 2019 (COVID-19) is driven by imbalanced immune responses, yet the role of immunometabolism in COVID-19 pathogenesis remains unclear. By investigating 87 patients with confirmed SARS-CoV-2 infection, 6 critically ill non-COVID-19 patients, and 47 uninfected controls, we found an immunometabolic dysregulation in patients with progressed COVID-19. Specifically, T cells, monocytes, and granulocytes exhibited increased mitochondrial mass, yet only T cells accumulated intracellular reactive oxygen species (ROS), were metabolically quiescent, and showed a disrupted mitochondrial architecture. During recovery, T cell ROS decreased to match the uninfected controls. Transcriptionally, T cells from severe/critical COVID-19 patients showed an induction of ROS-responsive genes as well as genes related to mitochondrial function and the basigin network. Basigin (CD147) ligands cyclophilin A and the SARS-CoV-2 spike protein triggered ROS production in T cells in vitro. In line with this, only PCR-positive patients showed increased ROS levels. Dexamethasone treatment resulted in a downregulation of ROS in vitro and T cells from dexamethasone-treated patients exhibited low ROS and basigin levels. This was reflected by changes in the transcriptional landscape. Our findings provide evidence of an immunometabolic dysregulation in COVID-19 that can be mitigated by dexamethasone treatment.


Assuntos
Basigina/fisiologia , COVID-19/imunologia , Dexametasona/farmacologia , SARS-CoV-2 , Linfócitos T/metabolismo , Adulto , COVID-19/metabolismo , Ciclofilina A/fisiologia , Ácidos Graxos/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/patologia , Espécies Reativas de Oxigênio/metabolismo
20.
Lupus ; 30(11): 1773-1780, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34284675

RESUMO

OBJECTIVE: Hypomethylation of CD40-ligand (CD40L) in T-cells is associated with increased disease activity in systemic lupus erythematosus (SLE). We therefore investigated possible associations of dietary methyl donors and products with CD40L methylation status in SLE. METHODS: Food frequency questionnaires were employed to calculate methyl donor micronutrients in 61 female SLE patients (age 45.7 ± 12.0 years, disease duration 16.2 ± 8.4 years) and compared to methylation levels of previously identified key DNA methylation sites (CpG17 and CpG22) within CD40L promotor of T-cells using quantitative DNA methylation analysis on the EpiTYPER mass spectrometry platform. Disease activity was assessed by SLE Disease Activity Index (SLEDAI). Linear regression modelling was used. P values were adjusted according to Benjamini & Hochberg. RESULTS: Amongst the micronutrients assessed (g per day), methionine and cysteine were associated with methylation of CpG17 (ß = 5.0 (95%CI: 0.6-9.4), p = 0.04; and ß = 2.4 (0.6-4.1), p = 0.02, respectively). Methionine, choline, and cysteine were additionally associated with the mean methylation of the entire CD40L (ß = 9.5 (1.0-18.0), p = 0.04; ß = 1.6 (0.4-3.0), p = 0.04; and ß = 4.3 (0.9-7.7), p = 0.02, respectively). Associations of the SLEDAI with hypomethylation were confirmed for CpG17 (ß=-32.6 (-60.6 to -4.6), p = 0.04) and CpG22 (ß=-38.3 (-61.2 to -15.4), p = 0.004), but not the mean methylation of CD40L. Dietary products with the highest impact on methylation included meat, ice cream, white bread, and cooked potatoes. CONCLUSIONS: Dietary methyl donors may influence DNA methylation levels and thereby disease activity in SLE.


Assuntos
Ligante de CD40 , Lúpus Eritematoso Sistêmico , Metilação , Micronutrientes , Adulto , Ligante de CD40/genética , Ligante de CD40/metabolismo , Colina/metabolismo , Estudos Transversais , Cisteína/metabolismo , Metilação de DNA/fisiologia , Registros de Dieta , Feminino , Humanos , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , Metionina/metabolismo , Micronutrientes/metabolismo , Pessoa de Meia-Idade , Gravidade do Paciente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA