Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Dis Aquat Organ ; 156: 115-121, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38095366

RESUMO

This work generates the data needed to set epidemiological cut-off values for disc-diffusion zone measurements of Vibrio cholerae. The susceptibility of 147 European isolates of non-O1/non-O139 V. cholerae to 19 antibiotics was established using a standardised disc diffusion method which specified incubation of Mueller Hinton agar plates at 35°C. Epidemiological cut-off values were calculated by analysis of the zone size data with the statistically based normalised resistance interpretation method. Cut-off values for 17 agents were calculated by analysis of the aggregated data from all 4 laboratories participating in this study. The cut-off values calculated were ≥18 mm for amoxicillin/clavulanate, ≥18 mm for amikacin, ≥19 mm for ampicillin, ≥27 mm for cefepime, ≥31 mm for cefotaxime, ≥24 mm for ceftazidime, ≥24 mm for chloramphenicol, ≥31 mm for ciprofloxacin, ≥16 mm for erythromycin, ≥ 27 mm for florfenicol, ≥16 mm for gentamicin, ≥23 mm for imipenem, ≥25 mm for meropenem, ≥29 mm for nalidixic acid, ≥28 mm for norfloxacin, ≥13 mm for streptomycin and ≥23 mm for tetracycline. For the other 2 agents the data from 1 laboratory was excluded from the censored aggregation because the data from that laboratory was considered excessively imprecise. The cut-off values for these 2 agents calculated for the aggregation of the data from 3 laboratories were ≥23 mm for trimethoprim and ≥24 mm for trimethoprim/sulfamethoxazole. These zone size data will be submitted to the Clinical Laboratory Standards Institute (CLSI) and European Committee for Antimicrobial Susceptibility Testing (EUCAST) for their consideration in setting international consensus epidemiological cut-off values for non O1/non-O139 V. cholerae.


Assuntos
Antibacterianos , Vibrio cholerae , Animais , Testes de Sensibilidade Microbiana/veterinária , Antibacterianos/farmacologia , Ciprofloxacina , Trimetoprima
2.
Wien Klin Wochenschr ; 135(21-22): 597-608, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37530997

RESUMO

Vibrio cholerae, an important human pathogen, is naturally occurring in specific aquatic ecosystems. With very few exceptions, only the cholera-toxigenic strains belonging to the serogroups O1 and O139 are responsible for severe cholera outbreaks with epidemic or pandemic potential. All other nontoxigenic, non-O1/non-O139 V. cholerae (NTVC) strains may cause various other diseases, such as mild to severe infections of the ears, of the gastrointestinal and urinary tracts as well as wound and bloodstream infections. Older, immunocompromised people and patients with specific preconditions have an elevated risk. In recent years, worldwide reports demonstrated that NTVC infections are on the rise, caused amongst others by elevated water temperatures due to global warming.The aim of this review is to summarize the knowledge gained during the past two decades on V. cholerae infections and its occurrence in bathing waters in Austria, with a special focus on the lake Neusiedler See. We investigated whether NTVC infections have increased and which specific environmental conditions favor the occurrence of NTVC. We present an overview of state of the art methods that are currently available for clinical and environmental diagnostics. A preliminary public health risk assessment concerning NTVC infections related to the Neusiedler See was established. In order to raise awareness of healthcare professionals for NTVC infections, typical symptoms, possible treatment options and the antibiotic resistance status of Austrian NTVC isolates are discussed.


Assuntos
Cólera , Vibrio cholerae , Humanos , Cólera/epidemiologia , Áustria/epidemiologia , Ecossistema
3.
Environ Microbiol Rep ; 15(2): 142-152, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36779243

RESUMO

Vibrio cholerae are natural inhabitants of specific aquatic environments. Strains not belonging to serogroups O1 and O139 are usually unable to produce cholera toxin and cause cholera. However, non-toxigenic V. cholerae (NTVC) are able to cause a variety of mild-to-severe human infections (via seafood consumption or recreational activities). The number of unreported cases is considered substantial, as NTVC infections are not notifiable and physicians are mostly unaware of this pathogen. In the northern hemisphere, NTVC infections have been reported to increase due to global warming. In Eastern Europe, climatic and geological conditions favour the existence of inland water-bodies harbouring NTVC. We thus investigated the occurrence of NTVC in nine Serbian natural and artificial lakes and ponds, many of them used for fishing and bathing. With the exception of one highly saline lake, all investigated water-bodies harboured NTVC, ranging from 5.4 × 101 to 1.86 × 104  CFU and 4.5 × 102 to 5.6 × 106 genomic units per 100 ml. The maximum values observed were in the range of bathing waters in other countries, where infections have been reported. Interestingly, 7 out of 39 fully sequenced presumptive V. cholerae isolates were assigned as V. paracholerae, a recently described sister species of V. cholerae. Some clones and sublineages of both V. cholerae and V. paracholerae were shared by different environments indicating an exchange of strains over long distances. Important pathogenicity factors such as hlyA, toxR, and ompU were present in both species. Seasonal monitoring of ponds/lakes used for recreation in Serbia is thus recommended to be prepared for potential occurrence of infections promoted by climate change-induced rise in water temperatures.


Assuntos
Vibrio cholerae , Humanos , Vibrio cholerae/genética , Lagos , Sérvia/epidemiologia , Lagoas , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA