Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomed Res Int ; 2022: 3605054, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36420094

RESUMO

A simple process based on the dual roles of both magnesium oxide (MgO) and iron oxide (FeO) with boron (B) as precursors and catalysts has been developed for the synthesis of borate composites of magnesium and iron (Mg2B2O5-Fe3BO6) at 1200°C. The as-synthesized composites can be a single material with the improved and collective properties of both iron borates (Fe3BO6) and magnesium borates (Mg2B2O5). At higher temperatures, the synthesized Mg2B2O5-Fe3BO6 composite is found thermally more stable than the single borates of both magnesium and iron. Similarly, the synthesized composites are found to prevent the growth of both gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) pathogenic bacteria on all the tested concentrations. Moreover, the inhibitory effect of the synthesized composite increases with an increase in concentration and is more pronounced against S. aureus as compared to E. coli.


Assuntos
Ferro , Magnésio , Magnésio/farmacologia , Boratos/farmacologia , Staphylococcus aureus , Escherichia coli , Bactérias
2.
Appl Radiat Isot ; 166: 109404, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32956924

RESUMO

The shortcomings in Boron neutron capture therapy (BNCT) and Hyperthermia for killing the tumor cell desired for the synthesis of a new kind of material suitable to be first used in BNCT and later on enable the conditions for Hyperthermia to destroy the tumor cell. The desire led to the synthesis of large band gap semiconductor nano-size Boron-10 enriched crystals of hexagonal boron nitride (10BNNCs). The contents of 10BNNCs are analyzed with the help of x-ray photoelectron spectroscopy (XPS) and counter checked with Raman and XRD. The 10B-contents in 10BNNCs produce 7Li and 4He nuclei. A Part of the 7Li and 4He particles released in the cell is allowed to kill the tumor (via BNCT) whereas the rest produce electron-hole pairs in the semiconductor layer of 10BNNCs suggested to work in Hyperthermia with an externally applied field.


Assuntos
Compostos de Boro/síntese química , Terapia por Captura de Nêutron de Boro/métodos , Nanopartículas/química , Animais , Boro/química , Boro/uso terapêutico , Compostos de Boro/química , Compostos de Boro/uso terapêutico , Humanos , Hipertermia Induzida/métodos , Isótopos/química , Isótopos/uso terapêutico , Microscopia Eletrônica de Transmissão , Nanopartículas/uso terapêutico , Nanopartículas/ultraestrutura , Nanotecnologia , Neoplasias/radioterapia , Neoplasias/terapia , Espectroscopia Fotoeletrônica , Pontos Quânticos/química , Pontos Quânticos/uso terapêutico , Pontos Quânticos/ultraestrutura , Análise Espectral Raman , Difração de Raios X
3.
RSC Adv ; 10(30): 17444-17451, 2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35515623

RESUMO

In this work, we have studied new double perovskite materials, A2 1+B2+B3+X6 1-, where A2 1+ = Cs, B2+ = Li, Na, B3+ = Al, Ga, In, and X6 1-. We used the all electron full-potential linearized augmented plane wave (FP-LAPW+lo) method within the framework of density functional theory. We used the mBJ approximation and WC-GGA as exchange-correlation functionals. We optimized the lattice constants with WC-GGA. Band structures were calculated with and without spin-orbit coupling (SOC). Further, band structures for Cs2LiGaBr6 and Cs2NaGaBr6 were calculated with SOC + mBJ to correct the band gap values with respect to experimental value. We obtained direct bandgaps at Γ-point of 1.966 eV for Cs2LiGaBr6 and 1.762 eV for Cs2NaGaBr6, which are similar to the parent organic-inorganic perovskite (MAPI) CH3NH3PbI3 (E g = 1.6 eV). Total and partial density of states were analyzed to understand the orbital contribution of Cs, Na, Li, Ga and Br near the Fermi level. The optical properties in terms of real and imaginary ε, refractive index n, extinction coefficient k, optical conduction σ, absorption I, and reflectivity R were calculated. A study of the elastic and mechanical properties shows that both materials are thermodynamically stable. A stable, direct bandgap and a gap value close to those of MAPI make Cs2NaGaBr6 a great competitor in the Pb-free hybrid perovskite solar cells world.

4.
RSC Adv ; 10(34): 20196, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35694640

RESUMO

[This corrects the article DOI: 10.1039/D0RA01764G.].

5.
ACS Appl Mater Interfaces ; 9(32): 27135-27141, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28753266

RESUMO

Structural stability and functional performances of vanadium dioxide (VO2) are strongly influenced by oxygen vacancies. However, the mechanism of metal-insulator transition (MIT) influenced by defects is still under debate. Here, we study the evolution of structure and electrical property of oxygen-deficient VO2 by a low temperature annealing process (LTP) based on a truss-structured VO2 nanonet. The oxygenation process of the oxygen-deficient VO2 is greatly prolonged, which enables us to probe the gradual change of properties of the oxygen-deficient VO2. A continuous lattice reduction is observed during LTP. No recrystallization and structural collapse of the VO2 nanonet can be found after LTP. The valence-band X-ray photoelectron spectroscopy (XPS) measurements indicate that the oxygen deficiency strongly affects the energy level of the valence band edge. Correspondingly, the resistance changes of the VO2 films from 1 to 4.5 orders of magnitude are achieved by LTP. The effect of oxygen vacancy on the electric field driven MIT is investigated. The threshold value of voltage triggering the MIT decreases with increasing the oxygen vacancy concentration. This work demonstrates a novel and effective way to control the content of oxygen vacancies in VO2 and the obvious impact of oxygen vacancy on MIT, facilitating further research on the role of oxygen vacancy in structure and MIT of VO2, which is important for the deep understanding of MIT and exploiting innovative functional application of VO2.

7.
Sci Rep ; 6: 27898, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27296772

RESUMO

The preparation of thermochromic vanadium dioxide (VO2) films in an economical way is of interest to realizing the application of smart windows. Here, we reported a successful preparation of self-assembly VO2 nanoplate films on TiO2-buffered glass by a facile hydrothermal process. The VO2 films composed of triangle-shaped plates standing on substrates exhibit a self-generated porous structure, which favors the transmission of solar light. The porosity of films is easily controlled by changing the concentration of precursor solutions. Excellent thermochromic properties are observed with visible light transmittance as high as 70.3% and solar modulating efficiency up to 9.3% in a VO2 film with porosity of ~35.9%. This work demonstrates a promising technique to promote the commercial utilization of VO2 in smart windows.

8.
Nanoscale ; 7(38): 15734-40, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26352416

RESUMO

In this study, few-layered MoS2 nanosheets (MoS2-NS) were obtained via the top-down exfoliation method from bulk MoS2 (MoS2-Bulk), and the dielectric properties and microwave absorption performance of MoS2-NS were first reported. The dimension-dependent dielectric properties and microwave absorption performance of MoS2 were investigated by presenting a comparative study between MoS2-NS and MoS2-Bulk. Our results show that the imaginary permittivity (ε'') of MoS2-NS/wax is twice as large as that of MoS2-Bulk/wax. The minimum reflection loss (RL) value of MoS2-NS/wax with 60 wt% loading is -38.42 dB at a thickness of 2.4 mm, which is almost 4 times higher than that of MoS2-Bulk/wax, and the corresponding bandwidth with effective attenuation (<-10 dB) of MoS2-NS/wax is up to 4.1 GHz (9.6-13.76 GHz). The microwave absorption performance of MoS2-NS is comparable to those reported in carbon-related nanomaterials. The enhanced microwave absorption performance of MoS2-NS is attributed to the defect dipole polarization arising from Mo and S vacancies and its higher specific surface area. These results suggest that MoS2-NS is a promising candidate material not only in fundamental studies but also in practical microwave applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA