Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 4566, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35296741

RESUMO

The application of floating treatment wetlands (FTWs) is an innovative nature-based solution for the remediation of polluted water. The rational improvement of water treatment via FTWs is typically based on multifactorial experiments which are labor-intensive and time-consuming. Here, we used the response surface methodology (RSM) for the optimization of FTW's operational parameters for the remediation of water polluted by crude oil. The central composite design (CCD) of RSM was used to generate the experimental layout for testing the effect of the variables hydrocarbon, nutrient, and surfactant concentrations, aeration, and retention time on the hydrocarbon removal in 50 different FTW test systems planted with the common reed, Phragmites australis. The results from these FTW were used to formulate a mathematical model in which the computational data strongly correlated with the experimental results. The operational parameters were further optimized via modeling prediction plus experimental validation in test FTW systems. In the FTW with optimized parameters, there was a 95% attenuation of the hydrocarbon concentration, which was very close to the 98% attenuation predicted by the model. The cost-effectiveness ratio showed a reduction of the treatment cost up to $0.048/liter of wastewater. The approach showed that RSM is a useful strategy for designing FTW experiments and optimizing operational parameters.


Assuntos
Petróleo , Poluentes Químicos da Água , Biodegradação Ambiental , Hidrocarbonetos , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Áreas Alagadas
2.
Saudi J Biol Sci ; 26(6): 1179-1186, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31516347

RESUMO

Helophytic plants contribute significantly in phytoremediation of a variety of pollutants due to their physiological or biochemical mechanisms. Phenol, which is reported to have negative/deleterious effects on plant metabolism at concentrations higher than 500 mg/L, remains hard to be removed from the environmental compartments using conventional phytoremediation procedures. The present study aims to investigate the feasibility of using P. australis (a helophytic grass) in combination with three bacterial strains namely Acinetobacter lwofii ACRH76, Bacillus cereus LORH97, and Pseudomonas sp. LCRH90, in a floating treatment wetland (FTW) for the removal of phenol from contaminated water. The strains were screened based on their phenol degrading and plant growth promoting activities. We found that inoculated bacteria were able to colonize in the roots and shoots of P. australis, suggesting their potential role in the successful removal of phenol from the contaminated water. Pseudomonas sp. LCRH90 dominated the bacterial community structure followed by A. lowfii ACRH76 and B. cereus LORH97. The removal rate was significantly high when compared with the individual partners, i.e., plants and bacteria separately. The plant biomass, which was drastically reduced in the presence of phenol, recovered significantly with the inoculation of bacterial consortia. Likewise, highest reduction in chemical oxygen demand (COD), biochemical oxygen demand (BOD), and total organic carbon (TOC) is achieved when both plants and bacteria were employed. The study, therefore, suggests that P. australis in combination with efficient bacteria can be a suitable choice to FTWs for phenol-degradation in water.

3.
Int J Phytoremediation ; 21(13): 1273-1289, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31244322

RESUMO

Floating treatment wetlands (FTWs) are an innovative product of ecological engineering that can play a promising role in wastewater treatment. It provides low-cost, eco-friendly, and sustainable solutions for the treatment of wastewater, particularly in regions with economic constraints. Generally, FTWs comprise rooted plants that grow on the surface of water with their roots extending down into the pelagic zone rather than being embedded into the sediments. This drooping structure helps develop (1) a hydraulic flow between the root network and the bottom of the treatment system and (2) a large biologically active surface area for the physical entrapment (filtration) of contaminants, as well as their biochemical transformation and degradation. Furthermore, the rooted network allows proliferation of microorganisms that form biofilms and enhance pollutant degradation while promoting plant growth. The augmentation of bacteria in FTWs has been proven to be the most effective approach for reclamation of wastewater. This article discusses the operational parameters of FTWs for maximal remediation of wastewater and highlights the importance of plant-bacteria partnerships in a typical FTW system for enhanced cleanup of wastewater. We propose that this technology is preferable over other methods that require high energy, costs, and area to install or operate machinery.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Bactérias , Biodegradação Ambiental , Eliminação de Resíduos Líquidos , Áreas Alagadas
4.
Chemosphere ; 217: 576-583, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30445402

RESUMO

Plants and bacteria individually as well as in synergism with each other hold a great potential to degrade a wide range of environmental pollutants. Floating treatment wetlands (FTWs) is an efficient and low-cost technology that uses the synergistic interaction between plant roots and microbes for in situ remediation of wastewater. The present study aims to assess the feasibility of FTW-based remediation of oil field-produced wastewater using an interaction between two plant species, Typha domingensis and Leptochloa fusca, in partnership with a consortium of crude oil-degrading bacterial species, Bacillus subtilis LORI66, Klebsiella sp. LCRI87, Acinetobacter Junii TYRH47, and Acinetobacter sp. BRSI56. All the treatments reduced contaminant levels, but T. domingensis, in combination with bacterial inoculation, exhibited the highest reduction in hydrocarbon (95%), COD (90%), and BOD content (93%) as compared to L. fusca. This combination maximally promoted increases in fresh biomass (31%), dry biomass (52%), and length (25%) of plants as well. This effect was further signified by the persistence of bacteria (40%) and considerable abundance (27%) and expression (28.5%) of the alkB gene in the rhizoplane of T. domingensis in comparison to that of L. fusca. The study, therefore, suggests that T. domingensis, in combination with bacterial consortium, has significant potential for treatment of oil field-produced water and can be exploited on large scale in FTWs.


Assuntos
Biodegradação Ambiental , Campos de Petróleo e Gás/química , Typhaceae , Águas Residuárias/química , Áreas Alagadas , Enzimas AlkB/genética , Bactérias/metabolismo , Biomassa , Poaceae/metabolismo , Poaceae/microbiologia , Typhaceae/genética , Typhaceae/metabolismo , Typhaceae/microbiologia , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo
5.
Environ Monit Assess ; 190(12): 716, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30421243

RESUMO

Microorganisms have great potential to control environmental pollution, particularly industrial sources of water pollution. Currently, leather industry is regarded as the most polluting and suffering from negative impacts due to the pollution it adds to the environment. Chromium, one of the hazardous pollutants discharged from tanneries, is highly toxic and carcinogenic in nature. Effective treatment of tannery effluent is a dire need of the era as a part of environmental management. Among all the wastewater treatment technologies, bioremediation is the most effective and environment-friendly tool to manage the water pollution. The present study evaluated the potential of 11 previously isolated bacterial strains, tolerant to high concentrations of salts and Cr for the bioremediation of tannery effluent. Among all the tested strains, Enterobacter sp. HU38, Microbacterium arborescens HU33, and Pantoea stewartii ASI11 were found most effective in reducing biological oxygen demand (BOD), chemical oxygen demand (COD), total dissolved solids (TDS), total suspended solids (TSS), and chromium (Cr) 70, 63, 57, 87, and 54%, respectively, of tannery effluent and proliferated well under highly toxic conditions, at 9 days of incubation. The pollutant removal efficacy of these bacterial strains can be improved by extending the incubation period or by increasing the amount of inoculum.


Assuntos
Biodegradação Ambiental , Resíduos Industriais/análise , Curtume , Poluentes Químicos da Água/análise , Carcinógenos/análise , Cromo/análise , Monitoramento Ambiental/métodos , Indústrias , Sais/análise , Águas Residuárias/análise , Poluição da Água/análise
6.
PeerJ ; 6: e4802, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29844965

RESUMO

Azo dyes are one of the largest classes of synthetic dyes being used in textile industries. It has been reported that 15-50% of these dyes find their way into wastewater that is often used for irrigation purpose in developing countries. The effect of azo dyes contamination on soil nitrogen (N) has been studied previously. However, how does the azo dye contamination affect soil carbon (C) cycling is unknown. Therefore, we assessed the effect of azo dye contamination (Reactive Black 5, 30 mg kg-1 dry soil), bacteria that decolorize this dye and dye + bacteria in the presence or absence of maize leaf litter on soil respiration, soil inorganic N and microbial biomass. We found that dye contamination did not induce any change in soil respiration, soil microbial biomass or soil inorganic N availability (P > 0.05). Litter evidently increased soil respiration. Our study concludes that the Reactive Black 5 azo dye (applied in low amount, i.e., 30 mg kg-1 dry soil) contamination did not modify organic matter decomposition, N mineralization and microbial biomass in a silty loam soil.

7.
Int J Phytoremediation ; 20(7): 692-698, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29723048

RESUMO

Phenol is a commonly found organic pollutant in industrial wastewaters. Its ecotoxicological significance is well known and, therefore, the compound is often required to be removed prior to discharge. In this study, plant-bacterial synergism was established in floating treatment wetlands (FTWs) in an attempt to maximize the removal of phenol from contaminated water. A common wetland plant, Typha domingensis, was vegetated on a floating mat and augmented with three phenol-degrading bacterial strains, Acinetobacter lwofii ACRH76, Bacillus cereus LORH97, and Pseudomonas sp. LCRH90, to develop FTWs for the remediation of water contaminated with phenol. All of the strains are known to have phenol-reducing properties, and grow well in FTWs. Results showed that T. domingensis was able to remove a small amount of phenol from the contaminated water; however, bacterial augmentation enhanced the removal potential significantly, i.e., 0.146 g/m2/day vs. 0.166 g/m2/day, respectively. Plant biomass also increased in the presence of bacterial consortia; and inoculated bacteria displayed successful colonization/survival in the rhizosphere, root interior and shoot interior of the plant. Similarly, highest reduction in chemical oxygen demand (COD), biochemical oxygen demand (BOD5), and total organic carbon (TOC) was achieved by the combined application of plants and bacteria. The study demonstrates that the plant-bacterial synergism in a FTW may be a more effective approach for the remediation of phenol-contaminated water.


Assuntos
Typhaceae , Áreas Alagadas , Bactérias , Biodegradação Ambiental , Fenol
8.
Water Sci Technol ; 77(5-6): 1262-1270, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29528314

RESUMO

Liquid effluent produced from tanning industries is loaded with organic and inorganic contaminants, particularly heavy metals, which may cause severe damage to the ecosystem. Constructed wetland (CW) is a promising product of the research in the field of ecological engineering which helps to overcome aquatic pollution. This investigation aims to develop a plant-endophyte synergism in CW for the efficient remediation of tannery effluent. In a vertical flow CW, Brachiaria mutica was vegetated and augmented with three endophytic bacterial strains. Results showed a reduction of 82% in COD, 94% in BOD5, and 95% in Cr by plant-endophyte synergism in CWs and it was significantly higher than the use of plants alone. Similarly, nutrients (N and P), lipids, ion content, SO42-, and Cl- showed similar reduction by the combined action of endophytes and B. mutica in CWs. The endophytes inoculation enhanced bacterial population in different compartments of the plants vegetated in CWs and the maximum was observed in the roots. This study revealed that plant-endophyte synergism in CWs can enhance the remediation of industrial wastewater.


Assuntos
Endófitos/fisiologia , Plantas/microbiologia , Poluentes Químicos da Água/química , Áreas Alagadas , Ecossistema , Recuperação e Remediação Ambiental , Resíduos Industriais/análise , Metais Pesados/química , Metais Pesados/metabolismo , Curtume , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias , Poluentes Químicos da Água/metabolismo
9.
J Hazard Mater ; 349: 242-251, 2018 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-29428685

RESUMO

The aim of the present study was to investigate the potential of plant-bacterial synergism in floating treatment wetlands (FTWs) for efficient remediation of an oil field wastewater. Two plants, Brachiara mutica and Phragmites australis, were vegetated on floatable mats to develop FTWs, and inoculated with bacterial cons which were then inoculated with a consortium of hydrocarbon-degrading bacteria (Bacillus subtilis strain LORI66, Klebsiella sp. strain LCRI87, Acinetobacter Junii strain TYRH47, Acinetobacter sp. strain LCRH81). Both plants successfully removed organic and inorganic pollutants from wastewater, but bioaugmentation of P. australis significantly enhanced the plant's efficiency to reduce oil content (97%), COD (93%), and BOD (97%), in wastewater. Analysis of alkane-degrading gene (alkB) abundance and its expression profile further validated a higher microbial growth and degradation activity in water around P. australis as well as its roots and shoots. This study provides insight into the available phytotechnology for remediation of crude oil-contaminated water and introduces a wetland macrophyte, P. australis, with tailor-made bacterial consortium as an effective tool for improved phytoremediation efficiency of FTWs.


Assuntos
Bactérias/metabolismo , Campos de Petróleo e Gás , Poaceae/metabolismo , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias , Animais , Bactérias/genética , Biodegradação Ambiental , Peixes , Genes Bacterianos , Resíduos Industriais/efeitos adversos , Poaceae/microbiologia , Águas Residuárias/toxicidade , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA