Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Epilepsia ; 64(2): 443-455, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36318112

RESUMO

OBJECTIVE: Mutations in the genes encoding neuronal ion channels are a common cause of Mendelian neurological diseases. We sought to identify novel de novo sequence variants in cases with early infantile epileptic phenotypes and neurodevelopmental anomalies. METHODS: Following clinical diagnosis, we performed whole exome sequencing of the index cases and their parents. Identified channel variants were expressed in Xenopus oocytes and their functional properties assessed using two-electrode voltage clamp. RESULTS: We identified novel de novo variants in KCNA6 in four unrelated individuals variably affected with neurodevelopmental disorders and seizures with onset in the first year of life. Three of the four identified mutations affect the pore-lining S6 α-helix of KV 1.6. A prominent finding of functional characterization in Xenopus oocytes was that the channel variants showed only minor effects on channel activation but slowed channel closure and shifted the voltage dependence of deactivation in a hyperpolarizing direction. Channels with a mutation affecting the S6 helix display dominant effects on channel deactivation when co-expressed with wild-type KV 1.6 or KV 1.1 subunits. SIGNIFICANCE: This is the first report of de novo nonsynonymous variants in KCNA6 associated with neurological or any clinical features. Channel variants showed a consistent effect on channel deactivation, slowing the rate of channel closure following normal activation. This specific gain-of-function feature is likely to underlie the neurological phenotype in our patients. Our data highlight KCNA6 as a novel channelopathy gene associated with early infantile epileptic phenotypes and neurodevelopmental anomalies.


Assuntos
Epilepsia , Transtornos do Neurodesenvolvimento , Humanos , Epilepsia/genética , Mutação/genética , Convulsões/genética , Canal de Potássio Kv1.6/genética
2.
Am J Hum Genet ; 108(12): 2368-2384, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34800363

RESUMO

The 2-oxoglutarate dehydrogenase-like (OGDHL) protein is a rate-limiting enzyme in the Krebs cycle that plays a pivotal role in mitochondrial metabolism. OGDHL expression is restricted mainly to the brain in humans. Here, we report nine individuals from eight unrelated families carrying bi-allelic variants in OGDHL with a range of neurological and neurodevelopmental phenotypes including epilepsy, hearing loss, visual impairment, gait ataxia, microcephaly, and hypoplastic corpus callosum. The variants include three homozygous missense variants (p.Pro852Ala, p.Arg244Trp, and p.Arg299Gly), three compound heterozygous single-nucleotide variants (p.Arg673Gln/p.Val488Val, p.Phe734Ser/p.Ala327Val, and p.Trp220Cys/p.Asp491Val), one homozygous frameshift variant (p.Cys553Leufs∗16), and one homozygous stop-gain variant (p.Arg440Ter). To support the pathogenicity of the variants, we developed a novel CRISPR-Cas9-mediated tissue-specific knockout with cDNA rescue system for dOgdh, the Drosophila ortholog of human OGDHL. Pan-neuronal knockout of dOgdh led to developmental lethality as well as defects in Krebs cycle metabolism, which was fully rescued by expression of wild-type dOgdh. Studies using the Drosophila system indicate that p.Arg673Gln, p.Phe734Ser, and p.Arg299Gly are severe loss-of-function alleles, leading to developmental lethality, whereas p.Pro852Ala, p.Ala327Val, p.Trp220Cys, p.Asp491Val, and p.Arg244Trp are hypomorphic alleles, causing behavioral defects. Transcript analysis from fibroblasts obtained from the individual carrying the synonymous variant (c.1464T>C [p.Val488Val]) in family 2 showed that the synonymous variant affects splicing of exon 11 in OGDHL. Human neuronal cells with OGDHL knockout exhibited defects in mitochondrial respiration, indicating the essential role of OGDHL in mitochondrial metabolism in humans. Together, our data establish that the bi-allelic variants in OGDHL are pathogenic, leading to a Mendelian neurodevelopmental disease in humans.


Assuntos
Ataxia/genética , Epilepsia/genética , Perda Auditiva/genética , Complexo Cetoglutarato Desidrogenase/genética , Mutação , Transtornos do Neurodesenvolvimento/genética , Transtornos da Visão/genética , Alelos , Animais , Células Cultivadas , Criança , Estudos de Coortes , Análise Mutacional de DNA , Drosophila melanogaster/genética , Saúde da Família , Feminino , Fibroblastos , Humanos , Masculino , Splicing de RNA
3.
Hum Mutat ; 42(7): 877-890, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33973683

RESUMO

Microphthalmia, coloboma, and aniridia are congenital ocular phenotypes with a strong genetic component but often unknown cause. We present a likely causative novel variant in MAB21L1, c.152G>T p.(Arg51Leu), in two family members with microphthalmia and aniridia, as well as novel or rare compound heterozygous variants of uncertain significance, c.184C>T p.(Arg62Cys)/c.-68T>C, and c.658G>C p.(Gly220Arg)/c.*529A>G, in two additional probands with microphthalmia, coloboma and/or cataracts. All variants were predicted as damaging by in silico programs. In vitro studies of coding variants revealed normal subcellular localization but variable stability for the corresponding mutant proteins. In vivo complementation assays using the zebrafish mab21l2 Q48Sfs*5 loss-of-function line demonstrated that though overexpression of wild-type MAB21L1 messenger RNA (mRNA) compensated for the loss of mab21l2, none of the coding variant mRNAs produced a statistically significant rescue, with p.(Arg51Leu) showing the highest degree of functional deficiency. Dominant variants in a close homolog of MAB21L1, MAB21L2, have been associated with microphthalmia and/or coloboma and repeatedly involved the same Arg51 residue, further supporting its pathogenicity. The possible role of p.(Arg62Cys) and p.(Gly220Arg) in microphthalmia is similarly supported by the observed functional defects, with or without an additional impact from noncoding MAB21L1 variants identified in each patient. This study suggests a broader spectrum of MAB21L1-associated disease.


Assuntos
Aniridia , Coloboma , Microftalmia , Animais , Aniridia/genética , Coloboma/genética , Proteínas do Olho , Proteínas de Homeodomínio/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Microftalmia/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
4.
Orphanet J Rare Dis ; 16(1): 136, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33736665

RESUMO

BACKGROUND: An identical homozygous missense variant in EIF3F, identified through a large-scale genome-wide sequencing approach, was reported as causative in nine individuals with a neurodevelopmental disorder, characterized by variable intellectual disability, epilepsy, behavioral problems and sensorineural hearing-loss. To refine the phenotypic and molecular spectrum of EIF3F-related neurodevelopmental disorder, we examined independent patients. RESULTS: 21 patients were homozygous and one compound heterozygous for c.694T>G/p.(Phe232Val) in EIF3F. Haplotype analyses in 15 families suggested that c.694T>G/p.(Phe232Val) was a founder variant. All affected individuals had developmental delays including delayed speech development. About half of the affected individuals had behavioral problems, altered muscular tone, hearing loss, and short stature. Moreover, this study suggests that microcephaly, reduced sensitivity to pain, cleft lip/palate, gastrointestinal symptoms and ophthalmological symptoms are part of the phenotypic spectrum. Minor dysmorphic features were observed, although neither the individuals' facial nor general appearance were obviously distinctive. Symptoms in the compound heterozygous individual with an additional truncating variant were at the severe end of the spectrum in regard to motor milestones, speech delay, organic problems and pre- and postnatal growth of body and head, suggesting some genotype-phenotype correlation. CONCLUSIONS: Our study refines the phenotypic and expands the molecular spectrum of EIF3F-related syndromic neurodevelopmental disorder.


Assuntos
Fenda Labial , Fissura Palatina , Deficiência Intelectual , Microcefalia , Transtornos do Neurodesenvolvimento , Fator de Iniciação 3 em Eucariotos , Humanos , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética
5.
Am J Hum Genet ; 104(5): 948-956, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30982612

RESUMO

The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.


Assuntos
Canais de Cálcio Tipo N/genética , Cálcio/metabolismo , Discinesias/genética , Epilepsia/genética , Mutação , Transmissão Sináptica , Adolescente , Criança , Pré-Escolar , Discinesias/patologia , Epilepsia/patologia , Feminino , Humanos , Lactente , Perda de Heterozigosidade , Masculino , Linhagem
6.
Cell Mol Life Sci ; 72(3): 597-615, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25084815

RESUMO

Mechanical load plays a significant role in bone and growth-plate development. Chondrocytes sense and respond to mechanical stimulation; however, the mechanisms by which those signals exert their effects are not fully understood. The primary cilium has been identified as a mechano-sensor in several cell types, including renal epithelial cells and endothelium, and accumulating evidence connects it to mechano-transduction in chondrocytes. In the growth plate, the primary cilium is involved in several regulatory pathways, such as the non-canonical Wnt and Indian Hedgehog. Moreover, it mediates cell shape, orientation, growth, and differentiation in the growth plate. In this work, we show that mechanical load enhances ciliogenesis in the growth plate. This leads to alterations in the expression and localization of key members of the Ihh-PTHrP loop resulting in decreased proliferation and an abnormal switch from proliferation to differentiation, together with abnormal chondrocyte morphology and organization. Moreover, we use the chondrogenic cell line ATDC5, a model for growth-plate chondrocytes, to understand the mechanisms mediating the participation of the primary cilium, and in particular KIF3A, in the cell's response to mechanical stimulation. We show that this key component of the cilium mediates gene expression in response to mechanical stimulation.


Assuntos
Condrócitos/fisiologia , Cílios/fisiologia , Lâmina de Crescimento/fisiologia , Mecanotransdução Celular/fisiologia , Análise de Variância , Animais , Fenômenos Biomecânicos , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Galinhas , Condrócitos/ultraestrutura , Primers do DNA/genética , Citometria de Fluxo , Imunofluorescência , Proteínas Hedgehog/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Microscopia Eletrônica de Varredura , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Estimulação Física , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
J Clin Endocrinol Metab ; 100(2): E325-32, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25387264

RESUMO

CONTEXT: Patients with type V osteogenesis imperfecta (OI) are heterozygous for a dominant IFITM5 c.-14C>T mutation, which adds five residues to the N terminus of bone-restricted interferon-induced transmembrane-like protein (BRIL), a transmembrane protein expressed in osteoblasts. Type V OI skeletal findings include hyperplastic callus formation, ossification of the forearm interosseous membrane, and dense metaphyseal bands. OBJECTIVE: The objective of this study was to examine the role of osteoblasts in the active mineralization traits of type V OI and the effect of the IFITM5 mutation on type I collagen. METHODS: We identified eight patients with the IFITM5 c.-14C>T mutation. Cultured osteoblasts from type V OI patients were used to study osteoblast differentiation and mineralization. RESULTS: We verified the expression and stability of mutant IFITM5 transcripts. In differentiated type V OI primary osteoblasts in culture, the IFITM5 expression and BRIL level is comparable with control. Both early and late markers of osteoblast differentiation are increased in type V OI osteoblasts. Mineralization, assayed by alizarin red staining, was increased in type V OI osteoblasts compared with control. However, type V OI osteoblasts have significantly decreased COL1A1 transcripts in mid- to late differentiation. Type I collagen protein is concomitantly decreased, with decreased cross-linked collagen in matrix and altered appearance of fibrils deposited in culture. CONCLUSIONS: This study demonstrates that type V OI mineralization has a gain-of-function mechanism at the osteoblast level, which likely underlies the overactive tissue mineralization seen in patients. Decreased type I collagen expression, secretion, and matrix incorporation establish type V OI as a collagen-related defect.


Assuntos
Calcinose/patologia , Colágeno Tipo I/genética , Proteínas de Membrana/genética , Osteoblastos/patologia , Osteogênese Imperfeita/patologia , Adulto , Idoso , Calcinose/genética , Calcinose/metabolismo , Pré-Escolar , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Feminino , Humanos , Masculino , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Mutação , Osteoblastos/metabolismo , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/metabolismo , Adulto Jovem
8.
Curr Opin Pediatr ; 26(4): 500-7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25007323

RESUMO

PURPOSE OF REVIEW: Osteogenesis imperfecta or 'brittle bone disease' has mainly been considered a bone disorder caused by collagen mutations. Within the last decade, however, a surge of genetic discoveries has created a new paradigm for osteogenesis imperfecta as a collagen-related disorder, where most cases are due to autosomal dominant type I collagen defects, while rare, mostly recessive, forms are due to defects in genes whose protein products interact with collagen protein. This review is both timely and relevant in outlining the genesis, development, and future of this paradigm shift in the understanding of osteogenesis imperfecta. RECENT FINDINGS: Bone-restricted interferon-induced transmembrane (IFITM)-like protein (BRIL) and pigment epithelium-derived factor (PEDF) defects cause types V and VI osteogenesis imperfecta via defective bone mineralization, while defects in cartilage-associated protein (CRTAP), prolyl 3-hydroxylase 1 (P3H1), and cyclophilin B (CYPB) cause types VII-IX osteogenesis imperfecta via defective collagen post-translational modification. Heat shock protein 47 (HSP47) and FK506-binding protein-65 (FKBP65) defects cause types X and XI osteogenesis imperfecta via aberrant collagen crosslinking, folding, and chaperoning, while defects in SP7 transcription factor, wingless-type MMTV integration site family member 1 (WNT1), trimeric intracellular cation channel type b (TRIC-B), and old astrocyte specifically induced substance (OASIS) disrupt osteoblast development. Finally, absence of the type I collagen C-propeptidase bone morphogenetic protein 1 (BMP1) causes type XII osteogenesis imperfecta due to altered collagen maturation/processing. SUMMARY: Identification of these multiple causative defects has provided crucial information for accurate genetic counseling, inspired a recently proposed functional grouping of osteogenesis imperfecta types by shared mechanism to simplify current nosology, and has prodded investigations into common pathways in osteogenesis imperfecta. Such investigations could yield critical information on cellular and bone tissue mechanisms and translate to new mechanistic insight into clinical therapies for patients.


Assuntos
Mutação , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/patologia , Antígenos de Diferenciação/genética , Proteína Morfogenética Óssea 1/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Ciclofilinas/genética , Proteínas da Matriz Extracelular/genética , Proteínas do Olho/genética , Proteínas de Choque Térmico HSP47/genética , Humanos , Canais Iônicos/genética , Glicoproteínas de Membrana/genética , Proteínas de Membrana/genética , Chaperonas Moleculares , Fatores de Crescimento Neural/genética , Proteínas do Tecido Nervoso/genética , Osteogênese/genética , Prolil Hidroxilases , Proteoglicanas/genética , Serpinas/genética , Fator de Transcrição Sp7 , Proteínas de Ligação a Tacrolimo/genética , Fatores de Transcrição/genética , Proteína Wnt1/genética
9.
J Bone Miner Res ; 29(6): 1402-11, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24519609

RESUMO

Osteogenesis imperfecta (OI) types V and VI are caused, respectively, by a unique dominant mutation in IFITM5, encoding BRIL, a transmembrane ifitm-like protein most strongly expressed in the skeletal system, and recessive null mutations in SERPINF1, encoding pigment epithelium-derived factor (PEDF). We identified a 25-year-old woman with severe OI whose dermal fibroblasts and cultured osteoblasts displayed minimal secretion of PEDF, but whose serum PEDF level was in the normal range. SERPINF1 sequences were normal despite bone histomorphometry consistent with type VI OI and elevated childhood serum alkaline phosphatase. We performed exome sequencing on the proband, both parents, and an unaffected sibling. IFITM5 emerged as the candidate gene from bioinformatics analysis, and was corroborated by membership in a murine bone co-expression network module containing all currently known OI genes. The de novo IFITM5 mutation was confirmed in one allele of the proband, resulting in a p.S40L substitution in the intracellular domain of BRIL but was absent in unaffected family members. IFITM5 expression was normal in proband fibroblasts and osteoblasts, and BRIL protein level was similar to control in differentiated proband osteoblasts on Western blot and in permeabilized mutant osteoblasts by microscopy. In contrast, SERPINF1 expression was decreased in proband osteoblasts; PEDF was barely detectable in conditioned media of proband cells. Expression and secretion of type I collagen was similarly decreased in proband osteoblasts; the expression pattern of several osteoblast markers largely overlapped reported values from cells with a primary PEDF defect. In contrast, osteoblasts from a typical case of type V OI, with an activating mutation at the 5'-terminus of BRIL, have increased SERPINF1 expression and PEDF secretion during osteoblast differentiation. Together, these data suggest that BRIL and PEDF have a relationship that connects the genes for types V and VI OI and their roles in bone mineralization.


Assuntos
Proteínas do Olho/biossíntese , Proteínas de Membrana/genética , Mutação/genética , Fatores de Crescimento Neural/biossíntese , Osteoblastos/metabolismo , Osteogênese Imperfeita/genética , Serpinas/biossíntese , Adulto , Fosfatase Alcalina/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Diferenciação Celular/genética , Criança , Pré-Escolar , Colágeno Tipo I/metabolismo , DNA Complementar/genética , Exoma/genética , Proteínas do Olho/metabolismo , Feminino , Redes Reguladoras de Genes , Humanos , Proteínas de Membrana/química , Dados de Sequência Molecular , Fatores de Crescimento Neural/metabolismo , Osteocalcina/metabolismo , Osteogênese Imperfeita/diagnóstico por imagem , Estabilidade Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Radiografia , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Serpinas/metabolismo , Adulto Jovem
10.
Am J Physiol Endocrinol Metab ; 305(1): E15-21, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23592480

RESUMO

The proinflammatory cytokine interleukin-1 (IL-1) signals through IL-1 receptor type I (IL-1RI) and induces osteoclastogenesis and bone resorption mainly during pathological conditions. Little is known about the effect of excess or absence of IL-1 signaling on the physiological development of the growth plate and bone. In this study, we examine growth plate morphology, bone structure, and mechanical properties as well as osteoclast number in IL-1RI knockout mice to evaluate the role of IL-1RI in the normal development of the growth plate and bone. We show for the first time that IL-1RI knockout mice have narrower growth plates due to a smaller hypertrophic zone, suggesting a role for this cytokine in hypertrophic differentiation, together with higher proteoglycan content. The bones of theses mice exhibit higher trabecular and cortical mass, increased mineral density, and superior mechanical properties. In addition, IL-1RI knockout mice have significantly reduced osteoclast numbers in the chondro-osseous junction, trabecular bone, and cortical bone. These results suggest that IL-1RI is involved in normal growth plate development and ECM homeostasis and that it is significant in the physiological process of bone modeling.


Assuntos
Remodelação Óssea/fisiologia , Lâmina de Crescimento/crescimento & desenvolvimento , Lâmina de Crescimento/fisiologia , Receptores Tipo I de Interleucina-1/fisiologia , Transdução de Sinais/fisiologia , Animais , Lâmina de Crescimento/diagnóstico por imagem , Homeostase/fisiologia , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoclastos/citologia , Osteoclastos/fisiologia , Proteoglicanas/metabolismo , Radiografia , Receptores Tipo I de Interleucina-1/genética , Receptores Tipo I de Interleucina-1/metabolismo , Tíbia/diagnóstico por imagem , Tíbia/crescimento & desenvolvimento , Tíbia/fisiologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-22787455

RESUMO

Extracellular matrix mineralization is an essential physiologic process in bone, teeth, and hypertrophic cartilage. Matrix Gla protein (MGP), an inhibitor of mineralization, is expressed by chondrocytes and vascular smooth muscle cells to inhibit calcification of those soft tissues. Tibial dyschondroplasia (TD), a skeletal abnormality apparent as a plug of non-vascularized, non-mineralized, white opaque cartilage in the tibial growth plate of avian species can serve as a good model for studying process and genes involved in matrix mineralization and calcification. In this work, we studied the involvement of MGP in the development of TD, as well as in the processes of spontaneous and induced recovery from this syndrome. First, we found that during normal bone development, MGP is expressed in specific time and locations, starting from wide-spread expression in the yet un-ossified diaphysis during embryonic development, to specific expression in hypertrophic chondrocytes adjacent to the chondro-osseous junction and the secondary ossification center just prior to calcification. In addition, we show that MGP is not expressed in the impaired TD lesion, however when the lesion begins to heal, it strongly express MGP prior to its calcification. Moreover, we show that when calcification is inhibited, a gap is formed between the expression zones of MGP and BMP2 and that this gap is closed during the healing process. To conclude, we suggest that MGP, directly or through interaction with BMP2, plays a role as ossification regulator that acts prior to ossification, rather then simple inhibitor.

12.
J Appl Physiol (1985) ; 108(1): 172-80, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19850728

RESUMO

Enzymes from the matrix metalloproteinase (MMP) family play a crucial role in growth-plate vascularization and ossification via proteolytic cleavage and remodeling of the extracellular matrix. Their regulation in the growth plate is crucial for normal matrix assembly. Endochondral ossification, which takes place at the growth plates, is influenced by mechanical loading. Using an in vivo avian model for mechanical loading, we have found increased blood penetration into the growth plates of loaded chicks. The purpose of this work was to study the involvement of MMP-2, -3, -9, -13, and -16 in the growth plate's response to loading and in the catch-up growth resulting from load release. We found that mechanical loading, as well as release from load, upregulated MMP-2, -9, and -13 expressions. In contrast, MMP-3, associated with cartilage injuries, and its associated protein connective tissue growth factor (CTGF), were downregulated by the load. However, after release from load, MMP-3 was upregulated and CTGF levels were elevated and caught up with the control. MMP-3 and CTGF were also downregulated after 60 min of mechanical stretching in vitro. These results demonstrate the central role of MMPs in the growth plate's response to mechanical loading, as well as in the catch-up growth followed load release.


Assuntos
Lâmina de Crescimento/fisiologia , Metaloproteinases da Matriz/metabolismo , Mecanotransdução Celular/fisiologia , Tíbia/fisiologia , Suporte de Carga/fisiologia , Animais , Animais Recém-Nascidos , Força Compressiva/fisiologia , Masculino
13.
Bone ; 43(4): 766-74, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18619566

RESUMO

INTRODUCTION: The relationship between load and the structure and mechanical properties of mature bones has been thoroughly described. In contrast, this relationship has been studied much less in immature bones, which consist of bony tissue and cartilaginous growth plate, during the postnatal period. This paper describes the effect of an externally applied load on the bones of young fast-growing chicks; in particular, we examine the effect on the growth plate, which regulates longitudinal bone growth, and the consequences in terms of bone structural and mechanical properties. MATERIALS AND METHODS: The tibial growth plates from chicks subjected to external load and control chicks, immediately after loading and following 5 days of load release, were studied by histological staining and quantitative PCR. The contralateral tibiae were mechanically tested by three-point bending and their structural features determined by micro-CT. RESULTS: At the end of the external loading period, the tibias of the experimental group were shorter and their growth plate narrower than in controls. However, at this time point, effects were not yet apparent in the bones' structural or mechanical parameters. After a further 5 days of no external load, bones and growth plates of the experimental group demonstrated the phenomenon of 'catch-up': the thickness of the growth plate exceeded that of the control; however the relative expression of genes controlling chondrocyte differentiation (collagen II and X) did not change, while the expression of factors related to growth-plate ossification (osteopontin, alkaline phosphatase) and cartilage and bone calcification (matrix and bone Gla proteins) was upregulated as a result of the catch-up process. At this time, however, the tibiae of the experimental group showed inferior mechanical and structural properties relative to the control group. CONCLUSION: External loading during bone elongation negatively affects the mechanical and structural properties of the skeleton. The effect is first noticeable in the growth plate, which regulates bone growth, and is exhibited in the bone phenotype after a lag period.


Assuntos
Desenvolvimento Ósseo/fisiologia , Osso e Ossos/metabolismo , Lâmina de Crescimento/metabolismo , Suporte de Carga/fisiologia , Adaptação Fisiológica/fisiologia , Fosfatase Alcalina/genética , Animais , Animais Recém-Nascidos , Osso e Ossos/citologia , Osso e Ossos/diagnóstico por imagem , Proteínas de Ligação ao Cálcio/genética , Galinhas , Colágeno Tipo II/genética , Colágeno Tipo X/genética , Proteínas da Matriz Extracelular/genética , Perfilação da Expressão Gênica , Lâmina de Crescimento/citologia , Lâmina de Crescimento/diagnóstico por imagem , Hibridização In Situ , Osteocalcina/genética , Osteopontina/genética , Radiografia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tíbia/citologia , Tíbia/diagnóstico por imagem , Tíbia/metabolismo , Proteína de Matriz Gla
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA