Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 15: 776809, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803599

RESUMO

Neurodevelopmental diseases (NDDs), such as autism spectrum disorders, epilepsy, and schizophrenia, are characterized by diverse facets of neurological and psychiatric symptoms, differing in etiology, onset and severity. Such symptoms include mental delay, cognitive and language impairments, or restrictions to adaptive and social behavior. Nevertheless, all have in common that critical milestones of brain development are disrupted, leading to functional deficits of the central nervous system and clinical manifestation in child- or adulthood. To approach how the different development-associated neuropathologies can occur and which risk factors or critical processes are involved in provoking higher susceptibility for such diseases, a detailed understanding of the mechanisms underlying proper brain formation is required. NDDs rely on deficits in neuronal identity, proportion or function, whereby a defective development of the cerebral cortex, the seat of higher cognitive functions, is implicated in numerous disorders. Such deficits can be provoked by genetic and environmental factors during corticogenesis. Thereby, epigenetic mechanisms can act as an interface between external stimuli and the genome, since they are known to be responsive to external stimuli also in cortical neurons. In line with that, DNA methylation, histone modifications/variants, ATP-dependent chromatin remodeling, as well as regulatory non-coding RNAs regulate diverse aspects of neuronal development, and alterations in epigenomic marks have been associated with NDDs of varying phenotypes. Here, we provide an overview of essential steps of mammalian corticogenesis, and discuss the role of epigenetic mechanisms assumed to contribute to pathophysiological aspects of NDDs, when being disrupted.

2.
Int J Mol Sci ; 22(3)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572758

RESUMO

The Eph receptor tyrosine kinases and their respective ephrin-ligands are an important family of membrane receptors, being involved in developmental processes such as proliferation, migration, and in the formation of brain cancer such as glioma. Intracellular signaling pathways, which are activated by Eph receptor signaling, are well characterized. In contrast, it is unknown so far whether ephrins modulate the expression of lncRNAs, which would enable the transduction of environmental stimuli into our genome through a great gene regulatory spectrum. Applying a combination of functional in vitro assays, RNA sequencing, and qPCR analysis, we found that the proliferation and migration promoting stimulation of mouse cerebellar granule cells (CB) with ephrinA5 diminishes the expression of the cancer-related lncRNA Snhg15. In a human medulloblastoma cell line (DAOY) ephrinA5 stimulation similarly reduced SNHG15 expression. Computational analysis identified triple-helix-mediated DNA-binding sites of Snhg15 in promoters of genes found up-regulated upon ephrinA5 stimulation and known to be involved in tumorigenic processes. Our findings propose a crucial role of Snhg15 downstream of ephrinA5-induced signaling in regulating gene transcription in the nucleus. These findings could be potentially relevant for the regulation of tumorigenic processes in the context of glioma.


Assuntos
Carcinogênese/genética , Efrina-A5/metabolismo , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante/genética , Animais , Carcinogênese/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Humanos , Meduloblastoma/genética , Meduloblastoma/metabolismo , Camundongos , Transdução de Sinais
3.
Int J Mol Sci ; 21(15)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751461

RESUMO

The limited regenerative capacity of neurons requires a tightly orchestrated cell death and survival regulation in the context of longevity, as well as age-associated and neurodegenerative diseases. Subordinate to genetic networks, epigenetic mechanisms, such as DNA methylation and histone modifications, are involved in the regulation of neuronal functionality and emerge as key contributors to the pathophysiology of neurodegenerative diseases. DNA methylation, a dynamic and reversible process, is executed by DNA methyltransferases (DNMTs). DNMT1 was previously shown to act on neuronal survival in the aged brain, whereby a DNMT1-dependent modulation of processes relevant for protein degradation was proposed as an underlying mechanism. Properly operating proteostasis networks are a mandatory prerequisite for the functionality and long-term survival of neurons. Malfunctioning proteostasis is found, inter alia, in neurodegenerative contexts. Here, we investigated whether DNMT1 affects critical aspects of the proteostasis network by a combination of expression studies, live cell imaging, and protein biochemical analyses. We found that DNMT1 negatively impacts retrograde trafficking and autophagy, with both being involved in the clearance of aggregation-prone proteins by the aggresome-autophagy pathway. In line with this, we found that the transport of GFP-labeled mutant huntingtin (HTT) to perinuclear regions, proposed to be cytoprotective, also depends on DNMT1. Depletion of Dnmt1 accelerated perinuclear HTT aggregation and improved the survival of cells transfected with mutant HTT. This suggests that mutant HTT-induced cytotoxicity is at least in part mediated by DNMT1-dependent modulation of degradative pathways.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Proteína Huntingtina/metabolismo , Neurônios/metabolismo , Animais , Autofagia , Linhagem Celular , Metilação de DNA , Epigênese Genética , Código das Histonas , Doença de Huntington/metabolismo , Camundongos , Neurônios/patologia , Proteostase
4.
Epigenetics ; 15(11): 1259-1274, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32441560

RESUMO

Apart from the conventional view of repressive promoter methylation, the DNA methyltransferase 1 (DNMT1) was recently described to modulate gene expression through a variety of interactions with diverse epigenetic key players. We here investigated the DNMT1-dependent transcriptional control of the homeobox transcription factor LHX1, which we previously identified as an important regulator in cortical interneuron development. We found that LHX1 expression in embryonic interneurons originating in the embryonic pre-optic area (POA) is regulated by non-canonic DNMT1 function. Analysis of histone methylation and acetylation revealed that both epigenetic modifications seem to be implicated in the control of Lhx1 gene activity and that DNMT1 contributes to their proper establishment. This study sheds further light on the regulatory network of cortical interneuron development including the complex interplay of epigenetic mechanisms.


Assuntos
Código das Histonas , Interneurônios/metabolismo , Proteínas com Homeodomínio LIM/genética , Fatores de Transcrição/genética , Animais , Linhagem Celular Tumoral , Células Cultivadas , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas com Homeodomínio LIM/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Área Pré-Óptica/citologia , Área Pré-Óptica/embriologia , Área Pré-Óptica/metabolismo , Fatores de Transcrição/metabolismo
5.
Cereb Cortex ; 30(7): 3921-3937, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32147726

RESUMO

The balance of excitation and inhibition is essential for cortical information processing, relying on the tight orchestration of the underlying subcellular processes. Dynamic transcriptional control by DNA methylation, catalyzed by DNA methyltransferases (DNMTs), and DNA demethylation, achieved by ten-eleven translocation (TET)-dependent mechanisms, is proposed to regulate synaptic function in the adult brain with implications for learning and memory. However, focus so far is laid on excitatory neurons. Given the crucial role of inhibitory cortical interneurons in cortical information processing and in disease, deciphering the cellular and molecular mechanisms of GABAergic transmission is fundamental. The emerging relevance of DNMT and TET-mediated functions for synaptic regulation irrevocably raises the question for the targeted subcellular processes and mechanisms. In this study, we analyzed the role dynamic DNA methylation has in regulating cortical interneuron function. We found that DNMT1 and TET1/TET3 contrarily modulate clathrin-mediated endocytosis. Moreover, we provide evidence that DNMT1 influences synaptic vesicle replenishment and GABAergic transmission, presumably through the DNA methylation-dependent transcriptional control over endocytosis-related genes. The relevance of our findings is supported by human brain sample analysis, pointing to a potential implication of DNA methylation-dependent endocytosis regulation in the pathophysiology of temporal lobe epilepsy, a disease characterized by disturbed synaptic transmission.


Assuntos
Metilação de DNA/genética , Endocitose/genética , Neurônios GABAérgicos/metabolismo , Interneurônios/metabolismo , Inibição Neural/genética , Sinapses/metabolismo , Animais , Clatrina , Proteínas do Citoesqueleto/genética , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Epigenoma , Epilepsia do Lobo Temporal/genética , Humanos , Potenciais Pós-Sinápticos Inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Técnicas de Patch-Clamp , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vesículas Sinápticas/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA