Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(21)2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37958949

RESUMO

Cells use glycans to encode information that modulates processes ranging from cell-cell recognition to programmed cell death. This information is encoded within a glycocode, and its decoding is performed by carbohydrate-binding proteins. Among these, lectins stand out due to their specific and reversible interaction with carbohydrates. Changes in glycosylation patterns are observed in several pathologies, including cancer, where abnormal glycans are found on the surfaces of affected tissues. Given the importance of the bioprospection of promising biomolecules, the current work aimed to determine the structural properties and anticancer potential of the mannose-specific lectin from seeds of Canavalia villosa (Cvill). Experimental elucidation of the primary and 3D structures of the lectin, along with glycan array and molecular docking, facilitated the determination of its fine carbohydrate-binding specificity. These structural insights, coupled with the lectin's specificity, have been combined to explain the antiproliferative effect of Cvill against cancer cell lines. This effect is dependent on the carbohydrate-binding activity of Cvill and its uptake in the cells, with concomitant activation of autophagic and apoptotic pathways.


Assuntos
Canavalia , Lectinas , Lectinas/farmacologia , Lectinas/análise , Canavalia/metabolismo , Simulação de Acoplamento Molecular , Lectinas de Plantas/metabolismo , Sementes/metabolismo , Carboidratos/análise , Polissacarídeos/análise
2.
Sci Rep ; 13(1): 20488, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993516

RESUMO

The development of effective recombinant vaccines against parasitic nematodes has been challenging and so far mostly unsuccessful. This has also been the case for Ostertagia ostertagi, an economically important abomasal nematode in cattle, applying recombinant versions of the protective native activation-associated secreted proteins (ASP). To gain insight in key elements required to trigger a protective immune response, the protein structure and N-glycosylation of the native ASP and a non-protective Pichia pastoris recombinant ASP were compared. Both antigens had a highly comparable protein structure, but different N-glycan composition. After mimicking the native ASP N-glycosylation via the expression in Nicotiana benthamiana plants, immunisation of calves with these plant-produced recombinants resulted in a significant reduction of 39% in parasite egg output, comparable to the protective efficacy of the native antigen. This study provides a valuable workflow for the development of recombinant vaccines against other parasitic nematodes.


Assuntos
Doenças dos Bovinos , Ostertagíase , Bovinos , Animais , Ostertagia/genética , Ostertagíase/prevenção & controle , Ostertagíase/veterinária , Vacinação/veterinária , Vacinas Sintéticas/genética , Proteínas Recombinantes/genética , Contagem de Ovos de Parasitas
3.
ACS Cent Sci ; 8(10): 1415-1423, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36313162

RESUMO

The molecular recognition features of LSECtin toward asymmetric N-glycans have been scrutinized by NMR and compared to those occurring in glycan microarrays. A pair of positional glycan isomers (LDN3 and LDN6), a nonelongated GlcNAc4Man3 N-glycan (G0), and the minimum binding epitope (the GlcNAcß1-2Man disaccharide) have been used to shed light on the preferred binding modes under both experimental conditions. Strikingly, both asymmetric LDN3 and LDN6 N-glycans are recognized by LSECtin with similar affinities in solution, in sharp contrast to the results obtained when those glycans are presented on microarrays, where only LDN6 was efficiently recognized by the lectin. Thus, different results can be obtained using different experimental approaches, pointing out the tremendous difficulty of translating in vitro results to the in vivo environment.

4.
Int J Biol Macromol ; 193(Pt B): 1562-1571, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34740693

RESUMO

Lectins from plants of the Diocleinae subtribe often exhibit specificity towards mannose/glucose and derived sugars, with some plants also displaying a second lectin specific to lactose/GalNAc. Here, we present a novel lectin from Collaea speciosa, named CsL, that displays specificity for GlcNAc/glucose. The lectin was extracted from Collaea speciosa seeds and purified by a single chromatographic step on a Sephadex G-50 matrix. In solution, the lectin appears as a dimeric protein composed of 25 kDa monomers. The protein is stable at pH 7-8 and dependent on divalent cations. CsL maintained its agglutination activity after heating to 90 °C for 1 h. Glycan array studies revealed that CsL binds to N-glycans with terminal GlcNAc residues, chitobiose and chitotriose moieties. The partial amino acid sequence of the lectin is similar to that of some lactose-specific lectins from the same subtribe. In contrast to other ConA-like lectins, CsL is not toxic to Artemia. Because of its remarkably different properties and specificity, this lectin could be the first member of a new group inside the Diocleinae lectins.


Assuntos
Fabaceae/química , Lectinas de Plantas/química , Polissacarídeos/química , Polissacarídeos/metabolismo , Sementes/química , Sequência de Aminoácidos , Animais , Artemia/metabolismo , Glucose/metabolismo , Hemaglutinação , Manose/metabolismo
5.
Org Biomol Chem ; 19(34): 7357-7362, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34387640

RESUMO

Glycodendron microarrays with defined valency have been constructed by on-chip synthesis on hydrophobic indium tin oxide (ITO) coated glass slides and employed in lectin-carbohydrate binding studies with several plant and human lectins. Glycodendrons presenting sugar epitopes at different valencies were prepared by spotwise strain-promoted azide-alkyne cycloaddition (SPAAC) between immobilised cyclooctyne dendrons and azide functionalised glycans. The non-covalent immobilisation of dendrons on the ITO surface by hydrophobic interaction allowed us to study dendron surface density and SPAAC conversion rate by in situ MALDI-TOF MS analysis. By diluting the dendron surface density we could study how the carbohydrate-lectin interactions became exclusively dependant on the valency of the immobilised glycodendron.


Assuntos
Lectinas
6.
Glycobiology ; 31(8): 1005-1017, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-33909073

RESUMO

Paucimannosidic glycans are restricted to the core structure [Man1-3GlcNAc2Fuc0-1] of N-glycans and are rarely found in mammalian tissues. Yet, especially [Man2-3GlcNAc2Fuc1] have been found significantly upregulated in tumors, including in colorectal and liver cancer. Mannitou IgM is a murine monoclonal antibody that was previously shown to recognize Man3GlcNAc2 with an almost exclusive selectivity. Here, we have sought the definition of the minimal glycan epitope of Mannitou IgM, initiated by screening on a newly designed paucimannosidic glycan microarray; among the best binders were Man3GlcNAc2 and its α1,6 core-fucosylated variant, Man3GlcNAc2Fuc1. Unexpectedly and in contrast to earlier findings, Man5GlcNAc2-type structures bind equally well and a large tolerance was observed for substitutions on the α1,6 arm. It was confirmed that any substitution on the single α1,3-linked mannose completely abolishes binding. Surface plasmon resonance for kinetic measurements of Mannitou IgM binding, either directly on the glycans or as presented on omega-1 and kappa-5 soluble egg antigens from the helminth parasite Schistosoma mansoni, showed submicromolar affinities. To characterize the epitope in greater and atomic detail, saturation transfer difference nuclear magnetic resonance spectroscopy was performed with the Mannitou antigen-binding fragment. The STD-NMR data demonstrated the strongest interactions with the aliphatic protons H1 and H2 of the α1-3-linked mannose and weaker imprints on its H3, H4 and H5 protons. In conclusion, Mannitou IgM binding requires a nonsubstituted α1,3-linked mannose branch of paucimannose also on proteins, making it a highly specific tool for the distinction of concurrent human tumor-associated carbohydrate antigens.


Assuntos
Glicoproteínas , Schistosoma mansoni , Animais , Proteínas de Ligação a DNA , Epitopos/química , Fucose/metabolismo , Glicoproteínas/metabolismo , Humanos , Imunoglobulina M , Mamíferos/metabolismo , Proteínas de Membrana , Camundongos , Polissacarídeos/química , Schistosoma mansoni/química , Schistosoma mansoni/metabolismo
7.
ACS Catal ; 11(15): 9052-9065, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-35662980

RESUMO

FUT8 is an essential α-1,6-fucosyltransferase that fucosylates the innermost GlcNAc of N-glycans, a process called core fucosylation. In vitro, FUT8 exhibits substrate preference for the biantennary complex N-glycan oligosaccharide (G0), but the role of the underlying protein/peptide to which N-glycans are attached remains unclear. Here, we explored the FUT8 enzyme with a series of N-glycan oligosaccharides, N-glycopeptides, and an Asn-linked oligosaccharide. We found that the underlying peptide plays a role in fucosylation of paucimannose (low mannose) and high-mannose N-glycans but not for complex-type N-glycans. Using saturation transfer difference (STD) NMR spectroscopy, we demonstrate that FUT8 recognizes all sugar units of the G0 N-glycan and most of the amino acid residues (Asn-X-Thr) that serve as a recognition sequon for the oligosaccharyltransferase (OST). The largest STD signals were observed in the presence of GDP, suggesting that prior FUT8 binding to GDP-ß-l-fucose (GDP-Fuc) is required for an optimal recognition of N-glycans. We applied genetic engineering of glycosylation capacities in CHO cells to evaluate FUT8 core fucosylation of high-mannose and complex-type N-glycans in cells with a panel of well-characterized therapeutic N-glycoproteins. This confirmed that core fucosylation mainly occurs on complex-type N-glycans, although clearly only at selected glycosites. Eliminating the capacity for complex-type glycosylation in cells (KO mgat1) revealed that glycosites with complex-type N-glycans when converted to high mannose lost the core Fuc. Interestingly, however, for erythropoietin that is uncommon among the tested glycoproteins in efficiently acquiring tetra-antennary N-glycans, two out of three N-glycosites obtained Fuc on the high-mannose N-glycans. An examination of the N-glycosylation sites of several protein crystal structures indicates that core fucosylation is mostly affected by the accessibility and nature of the N-glycan and not by the nature of the underlying peptide sequence. These data have further elucidated the different FUT8 acceptor substrate specificities both in vitro and in vivo in cells, revealing different mechanisms for promoting core fucosylation.

8.
Nat Commun ; 11(1): 973, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32080177

RESUMO

Core-fucosylation is an essential biological modification by which a fucose is transferred from GDP-ß-L-fucose to the innermost N-acetylglucosamine residue of N-linked glycans. A single human enzyme α1,6-fucosyltransferase (FUT8) is the only enzyme responsible for this modification via the addition of an α-1,6-linked fucose to N-glycans. To date, the details of substrate recognition and catalysis by FUT8 remain unknown. Here, we report the crystal structure of FUT8 complexed with GDP and a biantennary complex N-glycan (G0), which provides insight into both substrate recognition and catalysis. FUT8 follows an SN2 mechanism and deploys a series of loops and an α-helix which all contribute in forming the binding site. An exosite, formed by one of these loops and an SH3 domain, is responsible for the recognition of branched sugars, making contacts specifically to the α1,3 arm GlcNAc, a feature required for catalysis. This information serves as a framework for inhibitor design, and helps to assess its potential as a therapeutic target.


Assuntos
Fucosiltransferases/química , Fucosiltransferases/metabolismo , Biocatálise , Sequência de Carboidratos , Domínio Catalítico , Cristalografia por Raios X , Glicosilação , Guanosina Difosfato/metabolismo , Humanos , Análise em Microsséries , Modelos Moleculares , Polissacarídeos/química , Polissacarídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Domínios de Homologia de src
9.
Molecules ; 24(12)2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31242623

RESUMO

A fluorine nuclear magnetic resonance (19F-NMR)-based method is employed to assess the binding preferences and interaction details of a library of synthetic fluorinated monosaccharides towards dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN), a lectin of biomedical interest, which is involved in different viral infections, including HIV and Ebola, and is able to recognize a variety of self- and non-self-glycans. The strategy employed allows not only screening of a mixture of compounds, but also obtaining valuable information on the specific sugar-protein interactions. The analysis of the data demonstrates that monosaccharides Fuc, Man, Glc, and Gal are able to bind DC-SIGN, although with decreasing affinity. Moreover, a new binding mode between Man moieties and DC-SIGN, which might have biological implications, is also detected for the first time. The combination of the 19F with standard proton saturation transfer difference (1H-STD-NMR) data, assisted by molecular dynamics (MD) simulations, permits us to successfully define this new binding epitope, where Man coordinates a Ca2+ ion of the lectin carbohydrate recognition domain (CRD) through the axial OH-2 and equatorial OH-3 groups, thus mimicking the Fuc/DC-SIGN binding architecture.


Assuntos
Moléculas de Adesão Celular/química , Lectinas Tipo C/química , Receptores de Superfície Celular/química , Açúcares/química , Moléculas de Adesão Celular/metabolismo , Halogenação , Lectinas Tipo C/metabolismo , Modelos Moleculares , Conformação Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Receptores de Superfície Celular/metabolismo , Relação Estrutura-Atividade , Açúcares/metabolismo
10.
PLoS Pathog ; 12(9): e1005851, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27662652

RESUMO

Current treatments available for African sleeping sickness or human African trypanosomiasis (HAT) are limited, with poor efficacy and unacceptable safety profiles. Here, we report a new approach to address treatment of this disease based on the use of compounds that bind to parasite surface glycans leading to rapid killing of trypanosomes. Pradimicin and its derivatives are non-peptidic carbohydrate-binding agents that adhere to the carbohydrate moiety of the parasite surface glycoproteins inducing parasite lysis in vitro. Notably, pradimicin S has good pharmaceutical properties and enables cure of an acute form of the disease in mice. By inducing resistance in vitro we have established that the composition of the sugars attached to the variant surface glycoproteins are critical to the mode of action of pradimicins and play an important role in infectivity. The compounds identified represent a novel approach to develop drugs to treat HAT.

11.
Chem Soc Rev ; 42(10): 4358-76, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23303404

RESUMO

Glyconanotechnology can be seen as the synergy between nanotechnology and glycan related biological and medical problems. This review focuses on the crosstalk of glycoscience and nanotechnology, which will lead to a deeper understanding of glycobiology and to new glyco-materials with improved design and synergistic properties derived from glycoscience concepts for future nanodevices. It is intended to provide the glycoscientist with an application-oriented entry to the possibilities of nanotechnologies for his research. The most recent examples of glyco-nanomaterials as multivalent scaffolds for drug delivery, enzyme inhibition and for vaccine development, glycan functionalized quantum dots and nanoparticles in molecular imaging, biosensors for lectin/glycan detection based on nanomaterials, and new concepts for the affinity separation and analysis using nanomaterials or nanotools are revised.


Assuntos
Nanotecnologia , Polissacarídeos/química , Técnicas Biossensoriais , Glicômica , Glicosídeo Hidrolases/antagonistas & inibidores , Humanos , Lectinas/análise , Nanopartículas/química , Nanotubos de Carbono/química , Neoplasias/diagnóstico , Neoplasias/metabolismo , Neoplasias/patologia , Polissacarídeos/análise , Pontos Quânticos , Vacinas Conjugadas/química , Vacinas Conjugadas/imunologia
12.
Carbohydr Res ; 346(12): 1581-91, 2011 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-21645886

RESUMO

The regioselectivity of glycosylation of a 4,6-diol system in the ß-mannopyranosyl unit of a N-glycan pentasaccharide core structure is found to be strongly dependent on the structure of the glycosyl donor. While glycosylation with a 2-O-acetyl-D-mannopyranosyl trichloroacetimidate and with a d-mannopyranosyl (α1→3) 2-O-acetyl mannopyranosyl trichoroacetimidate regioselectively occurs at the primary OH-6 position, reaction with d-mannopyranosyl (α1→6) mannopyranosyl 2-O-benzoyl, 2-O-acetyl and 2-O-pivaloyl trichloroacetimidate results in approximately 1:1 mixture of regioisomers at primary OH-6 and secondary OH-4 positions.


Assuntos
Álcoois/química , Produtos Biológicos/síntese química , Oligossacarídeos/síntese química , Acetamidas , Configuração de Carboidratos , Cloroacetatos , Glicosilação , Manose/química , Estereoisomerismo , Ácido Tricloroacético/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA