Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Matrix Biol ; 121: 194-216, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37402431

RESUMO

Fibrolamellar carcinomas (FLCs), lethal tumors occurring in children to young adults, have genetic signatures implicating derivation from biliary tree stem cell (BTSC) subpopulations, co-hepato/pancreatic stem cells, involved in hepatic and pancreatic regeneration. FLCs and BTSCs express pluripotency genes, endodermal transcription factors, and stem cell surface, cytoplasmic and proliferation biomarkers. The FLC-PDX model, FLC-TD-2010, is driven ex vivo to express pancreatic acinar traits, hypothesized responsible for this model's propensity for enzymatic degradation of cultures. A stable ex vivo model of FLC-TD-2010 was achieved using organoids in serum-free Kubota's Medium (KM) supplemented with 0.1% hyaluronans (KM/HA). Heparins (10 ng/ml) caused slow expansion of organoids with doubling times of ∼7-9 days. Spheroids, organoids depleted of mesenchymal cells, survived indefinitely in KM/HA in a state of growth arrest for more than 2 months. Expansion was restored with FLCs co-cultured with mesenchymal cell precursors in a ratio of 3:7, implicating paracrine signaling. Signals identified included FGFs, VEGFs, EGFs, Wnts, and others, produced by associated stellate and endothelial cell precursors. Fifty-three, unique heparan sulfate (HS) oligosaccharides were synthesized, assessed for formation of high affinity complexes with paracrine signals, and each complex screened for biological activity(ies) on organoids. Ten distinct HS-oligosaccharides, all 10-12 mers or larger, and in specific paracrine signal complexes elicited particular biological responses. Of note, complexes of paracrine signals and 3-O sulfated HS-oligosaccharides elicited slowed growth, and with Wnt3a, elicited growth arrest of organoids for months. If future efforts are used to prepare HS-oligosaccharides resistant to breakdown in vivo, then [paracrine signal-HS-oligosaccharide] complexes are potential therapeutic agents for clinical treatments of FLCs, an exciting prospect for a deadly disease.


Assuntos
Carcinoma , Sulfatos , Criança , Humanos , Comunicação Parácrina , Heparitina Sulfato/metabolismo , Oligossacarídeos/farmacologia , Oligossacarídeos/metabolismo
3.
Front Med ; 17(3): 432-457, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37402953

RESUMO

The liver has a complex cellular composition and a remarkable regenerative capacity. The primary cell types in the liver are two parenchymal cell populations, hepatocytes and cholangiocytes, that perform most of the functions of the liver and that are helped through interactions with non-parenchymal cell types comprising stellate cells, endothelia and various hemopoietic cell populations. The regulation of the cells in the liver is mediated by an insoluble complex of proteins and carbohydrates, the extracellular matrix, working synergistically with soluble paracrine and systemic signals. In recent years, with the rapid development of genetic sequencing technologies, research on the liver's cellular composition and its regulatory mechanisms during various conditions has been extensively explored. Meanwhile breakthroughs in strategies for cell transplantation are enabling a future in which there can be a rescue of patients with end-stage liver diseases, offering potential solutions to the chronic shortage of livers and alternatives to liver transplantation. This review will focus on the cellular mechanisms of liver homeostasis and how to select ideal sources of cells to be transplanted to achieve liver regeneration and repair. Recent advances are summarized for promoting the treatment of end-stage liver diseases by forms of cell transplantation that now include grafting strategies.


Assuntos
Hepatopatias , Fígado , Humanos , Fígado/cirurgia , Hepatócitos/metabolismo , Hepatócitos/transplante , Células-Tronco/metabolismo , Hepatopatias/cirurgia
4.
J Hepatol ; 78(1): 165-179, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36089156

RESUMO

BACKGROUND & AIMS: Common precursors for the liver, biliary tree, and pancreas exist at an early stage of development in the definitive endoderm forming the foregut. We have identified and characterised endodermal stem/progenitor cells with regenerative potential persisting in the adult human duodenum. METHODS: Human duodena were obtained from organ donors, and duodenal submucosal gland cells were isolated after removal of the mucosa layer. Cells were cultured on plastic or as organoids and were transplanted into severe combined immunodeficient (SCID) mouse livers. RESULTS: In situ studies of submucosal glands in the human duodenum revealed cells expressing stem/progenitor cell markers that had unique phenotypic traits distinguishable from intestinal crypt cells. Genetic signature studies indicated that the cells are closer to biliary tree stem cells and to definitive endodermal cells than to adult hepatocytes, supporting the interpretation that they are endodermal stem/progenitor cells. In vitro, human duodenal submucosal gland cells demonstrated clonal growth, capability to form organoids, and ability to acquire functional hepatocyte traits. In vivo, transplanted cells engrafted into the livers of immunocompromised mice and differentiated to mature liver cells. In an experimental model of fatty liver, human duodenal submucosal gland cells were able to rescue hosts from liver damage by supporting repopulation and regeneration of the liver. CONCLUSIONS: A cell population with clonal growth and organoid formation capability, which has liver differentiation potency in vitro and in vivo in murine experimental models, is present within adult duodenal submucosal glands. These cells can be isolated, do not require reprogramming, and thus could potentially represent a novel cell source for regenerative medicine of the liver. IMPACT AND IMPLICATIONS: Cell therapies for liver disease could represent an option to support liver function, but the identification of sustainable and viable cell sources is critical. Here, we describe a cell population with organoid formation capability and liver-specific regenerative potential in submucosal glands of the human duodenum. Duodenal submucosal gland cells are isolated from adult organs, do not require reprogramming, and could rescue hepatocellular damage in preclinical models of chronic, but not acute, liver injury. Duodenal submucosal gland cells could represent a potential candidate cell source for regenerative medicine of the liver, but the determination of cell dose and toxicity is needed before clinical testing in humans.


Assuntos
Sistema Biliar , Hiperplasia Nodular Focal do Fígado , Adulto , Humanos , Camundongos , Animais , Camundongos SCID , Regeneração Hepática , Hepatócitos , Fígado/lesões , Diferenciação Celular
5.
Cell Oncol (Dordr) ; 45(6): 1053-1071, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36087253

RESUMO

Abnormal CDK4/6-Rb-E2F signal transduction is a common finding in tumors and is a driving factor for the excessive proliferation of various tumor cells. PD-0332991, a highly specific, small molecule inhibitor for CDK4 and 6, has been shown to inhibit tumor growth by abrogating the phosphorylating capacity of CDK4/6 and suppressing Rb phosphorylation. It has been promoted for the treatment of breast cancer and potentially for other tumor types such as liver cancers, lung cancers and sarcomas. Due to the risk of monotherapy resistance, PD-0332991 is commonly used in combination with other drugs. Such combination treatments have proved able to inhibit tumor proliferation more effectively, induce stronger senescence and apoptosis, and enhance the efficiency of immunotherapy. Therefore, tumor cells with senescence induced by PD-0332991 are now used as ideal screening tools of cytolytic drugs with more efficient and thorough anti-tumor properties. With more extensive understandings about the branching points between senescence and apoptosis, it is possible to refine the dosage of PD-0332991. Better characterization of resistant cells, of inhibitors and of adverse effects such as leukopenia are needed to overcome obstacles in the use of PD-0332991. In this review of PD-0332991 research, we hope to provide guidance of transitions from laboratory findings to clinical applications of PD-0332991 and to facilitate PD-0332991-based multi-inhibitor combination therapies for various tumors.


Assuntos
Neoplasias da Mama , Inibidores de Proteínas Quinases , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
6.
Biomaterials ; 288: 121647, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36030102

RESUMO

Patch grafting, a novel strategy for transplantation of stem/progenitor organoids into porcine livers, has been found successful also for organoid transplantation into other normal or diseased solid organs in pigs and mice. Each organoid contained ∼100 cells comprised of biliary tree stem cells (BTSCs), co-hepato/pancreatic stem/progenitors, and partnered with early lineage stage mesenchymal cells (ELSMCs), angioblasts and precursors to endothelia and stellate cells. Patch grafting enabled transplantation into livers or pancreases of ≥108th (pigs) or ≥106th-7th (mice) organoids/patch. Graft conditions fostered expression of multiple matrix-metalloproteinases (MMPs), especially secretory isoforms, resulting in transient loss of the organ's matrix-dictated histological features, including organ capsules, and correlated with rapid integration within a week of organoids throughout the organs and without emboli or ectopic cell distribution. Secondarily, within another week, there was clearance of graft biomaterials, followed by muted expression of MMPs, restoration of matrix-dictated histology, and maturation of donor cells to functional adult fates. The ability of patch grafts of organoids to rescue hosts from genetic-based disease states was demonstrated with grafts of BTSC/ELSMC organoids on livers, able to rescue NRG/FAH-KO mice from type I tyrosinemia, a disease caused by absence of fumaryl acetoacetate hydrolase. With the same grafts, if on pancreas, they were able to rescue NRG/Akita mice from type I diabetes, caused by a mutation in the insulin 2 gene. The potential of patch grafting for cell therapies for solid organs now requires translational studies to enable its adaptation and uses for clinical programs.


Assuntos
Sistema Biliar , Organoides , Animais , Fígado , Camundongos , Organoides/metabolismo , Pâncreas/metabolismo , Células-Tronco/metabolismo , Suínos
7.
Hepatol Commun ; 6(10): 2950-2963, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36000549

RESUMO

Fibrolamellar hepatocellular carcinoma (FLC) is a disease that occurs in children and young adults. The development of FLC is associated with creation of a fusion oncoprotein DNAJB1-PKAc kinase, which activates multiple cancer-associated pathways. The aim of this study was to examine the role of human genomic regions, called cancer-enhancing genomic regions or aggressive liver cancer domains (CEGRs/ALCDs), in the development of FLC. Previous studies revealed that CEGRs/ALCDs are located in multiple oncogenes and cancer-associated genes, regularly silenced in normal tissues. Using the regulatory element locus intersection (RELI) algorithm, we searched a large compendium of chromatin immunoprecipitation-sequencing (ChIP) data sets and found that CEGRs/ALCDs contain regulatory elements in several human cancers outside of pediatric hepatic neoplasms. The RELI algorithm further identified components of the ß-catenin-TCF7L2/TCF4 pathway, which interacts with CEGRs/ALCDs in several human cancers. Particularly, the RELI algorithm found interactions of transcription factors and chromatin remodelers with many genes that are activated in patients with FLC. We found that these FLC-specific genes contain CEGRs/ALCDs, and that the driver of FLC, fusion oncoprotein DNAJB1-PKAc, phosphorylates ß-catenin at Ser675, resulting in an increase of ß-catenin-TCF7L2/TCF4 complexes. These complexes increase a large family of CEGR/ALCD-dependent collagens and oncogenes. The DNAJB1-PKAc-ß-catenin-CEGR/ALCD pathway is preserved in lung metastasis. The inhibition of ß-catenin in FLC organoids inhibited the expression of CEGRs/ALCDs-dependent collagens and oncogenes, preventing the formation of the organoid's structure. Conclusion: This study provides a rationale for the development of ß-catenin-based therapy for patients with FLC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , beta Catenina/metabolismo , Carcinoma Hepatocelular/genética , Cromatina , Regulação Neoplásica da Expressão Gênica/genética , Genoma Humano , Genômica , Proteínas de Choque Térmico HSP40/genética , Humanos , Neoplasias Hepáticas/genética , Proteínas de Fusão Oncogênica/genética , Fatores de Transcrição/genética , beta Catenina/genética
8.
Front Cell Dev Biol ; 10: 903740, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721478

RESUMO

Mice have genetic and physiological similarities with humans and a well-characterized genetic background that is easy to manipulate. Murine models have become the most favored, robust mammalian systems for experimental analyses of biological processes and disease conditions due to their low cost, rapid reproduction, a wealth of mouse strains with defined genetic conditions (both native ones as well as ones established experimentally), and high reproducibility with respect to that which can be done in experimental studies. In this review, we focus on murine models for liver, an organ with renown regenerative capacity and the organ most central to systemic, complex metabolic and physiological functions for mammalian hosts. Establishment of murine models has been achieved for all aspects of studies of normal liver, liver diseases, liver injuries, and regenerative repair mechanisms. We summarize key information on current mouse systems that partially model facets of clinical scenarios, particularly those associated with drug-induced acute or chronic liver injuries, dietary related, non-alcoholic liver disease (NAFLD), hepatitis virus infectious chronic liver diseases, and autoimmune hepatitis (AIH). In addition, we also include mouse models that are suitable for studying liver cancers (e.g., hepatocellular carcinomas), the aging process (senescence, apoptosis), and various types of liver injuries and regenerative processes associated with them.

9.
Front Cell Dev Biol ; 10: 814165, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186929

RESUMO

Contrasting evidence is present regarding the contribution of stem/progenitor cell populations to pancreatic regeneration in diabetes. Interestingly, a cell compartment with stem/progenitor cell features has been identified in the pancreatic duct glands (PDGs). The aims of the present study were to evaluate pancreatic islet injury and regeneration, and the participation of the PDG compartment in type 2 diabetic mellitus (T2DM) and in an experimental model of diabetes. Human pancreata were obtained from normal (N = 5) or T2DM (N = 10) cadaveric organ donors. Experimental diabetes was generated in mice by intraperitoneal injection of 150 mg/kg of streptozotocin (STZ, N = 10); N = 10 STZ mice also received daily intraperitoneal injections of 100 µg of human recombinant PDX1 peptide (STZ + PDX1). Samples were examined by immunohistochemistry/immunofluorescence or RT-qPCR. Serum glucose and c-peptide levels were measured in mice. Islets in T2DM patients showed ß-cell loss, signs of injury and proliferation, and a higher proportion of central islets. PDGs in T2DM patients had a higher percentage of proliferating and insulin+ or glucagon+ cells compared to controls; pancreatic islets could be observed within pancreatic duct walls of T2DM patients. STZ mice were characterized by reduced islet area compared to controls. PDX1 treatment increased islet area and the percentage of central islets compared to untreated STZ mice but did not revert diabetes. In conclusion, T2DM patients show signs of pancreatic islet regeneration and involvement of the PDG niche. PDX1 administration could support increased endocrine pancreatic regeneration in STZ. These findings contribute to defining the role and participation of stem/progenitor cell compartments within the pancreas.

10.
Cancer Res Commun ; 2(7): 663-678, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36923282

RESUMO

Fibrolamellar carcinoma (FLC) is an aggressive liver cancer with no effective therapeutic options. The extracellular environment of FLC tumors is poorly characterized and may contribute to cancer growth and/or metastasis. To bridge this knowledge gap, we assessed pathways relevant to proteoglycans, a major component of the extracellular matrix. We first analyzed gene expression data from FLC and nonmalignant liver tissue (n = 27) to identify changes in glycosaminoglycan (GAG) biosynthesis pathways and found that genes associated with production of chondroitin sulfate, but not other GAGs, are significantly increased by 8-fold. We then implemented a novel LC/MS-MS based method to quantify the abundance of different types of GAGs in patient tumors (n = 16) and found that chondroitin sulfate is significantly more abundant in FLC tumors by 6-fold. Upon further analysis of GAG-associated proteins, we found that versican (VCAN) expression is significantly upregulated at the mRNA and protein levels, the latter of which was validated by IHC. Finally, we performed single-cell assay for transposase-accessible chromatin sequencing on FLC tumors (n = 3), which revealed for the first time the different cell types in FLC tumors and also showed that VCAN is likely produced not only from FLC tumor epithelial cells but also activated stellate cells. Our results reveal a pathologic aberrancy in chondroitin (but not heparan) sulfate proteoglycans in FLC and highlight a potential role for activated stellate cells. Significance: This study leverages a multi-disciplinary approach, including state-of-the-art chemical analyses and cutting-edge single-cell genomic technologies, to identify for the first time a marked chondroitin sulfate aberrancy in FLC that could open novel therapeutic avenues in the future.


Assuntos
Carcinoma Hepatocelular , Sulfatos de Condroitina , Humanos , Sulfatos de Condroitina/metabolismo , Carcinoma Hepatocelular/genética , Proteoglicanas de Heparan Sulfato , Versicanas
11.
Biomaterials ; 280: 121266, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34875515

RESUMO

Many key functions performed by the liver depend on the interaction between parenchymal cells and the microenvironment comprised of neighboring cells and extracellular matrix. The biological macromolecules in the matrix, which are dynamically changing, participate in various physiological processes through interactions with cell surface receptors, antigens, and ion channels. We found the rat liver biomatrix scaffold (LBS) prepared from adult rats is more effective in enhancing the function of hepatic spheroids than those derived from newborn or senile rats. Combined with matrisome and bioinformatics analyses, we further found that the glycoproteins, fibronectin and fibrinogen may have special potential for improving hepatocyte function. Human primary hepatocyte organoids and HepaRG spheroids showed more mature hepatocyte phenotype after adding fibronectin and fibrinogen to the culture system. During the cultivation of hepatic spheroids, fibrinogen resulted in an increase in cell-cell junction by promoting cell aggregation and helping fibronectin to assemble on cell surface, which resulted in activation of Wnt/ß-catenin pathway. Fibronectin-integrin αVß1-Wnt/ß-catenin may be the axis of signal transduction in parenchymal cell microenvironment. Importantly, fibrinogen enhances the signal transduction. These results suggest that the addition of fibronectin and fibrinogen to the 3D culture system is a new strategy for inducing parenchymal cell functional maturation.


Assuntos
Fibrinogênio , Fibronectinas , Animais , Matriz Extracelular/metabolismo , Fibrinogênio/metabolismo , Fibronectinas/metabolismo , Hepatócitos , Fígado/metabolismo , Ratos
12.
Ann N Y Acad Sci ; 1506(1): 142-163, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34850398

RESUMO

The test for the cancer stem cell (CSC) hypothesis is to find a target expressed on all, and only CSCs in a patient tumor, then eliminate all cells with that target that eliminates the cancer. That test has not yet been achieved, but CSC diagnostics and targets found on CSCs and some other cells have resulted in a few clinically relevant therapies. However, it has become apparent that eliminating the subset of tumor cells characterized by self-renewal properties is essential for long-term tumor control. CSCs are able to regenerate and initiate tumor growth, recapitulating the heterogeneity present in the tumor before treatment. As great progress has been made in identifying and elucidating the biology of CSCs as well as their interactions with the tumor microenvironment, the time seems ripe for novel therapeutic strategies that target CSCs to find clinical applicability. On May 19-21, 2021, researchers in cancer stem cells met virtually for the Keystone eSymposium "Cancer Stem Cells: Advances in Biology and Clinical Translation" to discuss recent advances in the understanding of CSCs as well as clinical efforts to target these populations.


Assuntos
Congressos como Assunto/tendências , Neoplasias/genética , Células-Tronco Neoplásicas/fisiologia , Relatório de Pesquisa , Pesquisa Translacional Biomédica/tendências , Microambiente Tumoral/fisiologia , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Humanos , Neoplasias/metabolismo , Pesquisa Translacional Biomédica/métodos
13.
Biomaterials ; 277: 121067, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34517276

RESUMO

Epithelial cell therapies have been at an impasse because of inefficient methods of transplantation to solid organs. Patch grafting strategies were established enabling transplantation of ≥107th organoids/patch of porcine GFP+ biliary tree stem/progenitors into livers of wild type hosts. Grafts consisted of organoids embedded in soft (~100 Pa) hyaluronan hydrogels, both prepared in serum-free Kubota's Medium; placed against target sites; covered with a silk backing impregnated with more rigid hyaluronan hydrogels (~700 Pa); and use of the backing to tether grafts with sutures or glue to target sites. Hyaluronan coatings (~200-300 Pa) onto the serosal surface of the graft served to minimize adhesions with neighboring organs. The organ's clearance of hyaluronans enabled restoration of tissue-specific paracrine and systemic signaling, resulting in return of normal hepatic histology, with donor parenchymal cells uniformly integrated amidst host cells and that had differentiated to mature hepatocytes and cholangiocytes. Grafts containing donor mature hepatocytes, partnered with endothelia, and in the same graft biomaterials as for stem/progenitor organoids, did not engraft. Engraftment occurred if porcine liver-derived mesenchymal stem cells (MSCs) were co-transplanted with donor mature cells. RNA-seq analyses revealed that engraftment correlated with expression of matrix-metalloproteinases (MMPs), especially secreted isoforms that were found expressed strongly by organoids, less so by MSCs, and minimally, if at all, by adult cells. Engraftment with patch grafting strategies occurred without evidence of emboli or ectopic cell distribution. It was successful with stem/progenitor organoids or with cells with a source(s) of secreted MMP isoforms and offers significant potential for enabling cell therapies for solid organs.


Assuntos
Fígado , Organoides , Animais , Diferenciação Celular , Hepatócitos , Células-Tronco , Suínos
14.
Front Cell Dev Biol ; 9: 670059, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34141708

RESUMO

BACKGROUND: Functions of miRNAs involved in tumorigenesis are well reported, yet, their roles in normal cell lineage commitment remain ambiguous. Here, we investigated a specific "transcription factor (TF)-miRNA-Target" regulatory network during the lineage maturation of biliary tree stem cells (BTSCs) into adult hepatocytes (hAHeps). METHOD: Bioinformatic analysis was conducted based on our RNA-seq and microRNA-seq datasets with four human hepatic-lineage cell lines, including hBTSCs, hepatic stem cells (hHpSCs), hepatoblasts (hHBs), and hAHeps. Short time-series expression miner (STEM) analysis was performed to reveal the time-dependent dynamically changed miRNAs and mRNAs. GO and KEGG analyses were applied to reveal the potential function of key miRNAs and mRNAs. Then, the miRDB, miRTarBase, TargetScan, miRWalk, and DIANA-microT-CDS databases were adopted to predict the potential targets of miRNAs while the TransmiR v2.0 database was used to obtain the experimentally supported TFs that regulate miRNAs. The TCGA, Kaplan-Meier Plotter, and human protein atlas (HPA) databases and more than 10 sequencing data, including bulk RNA-seq, microRNA-seq, and scRNA-seq data related to hepatic development or lineage reprogramming, were obtained from both our or other published studies for validation. RESULTS: STEM analysis showed that during the maturation from hBTSCs to hAHeps, 52 miRNAs were downwardly expressed and 928 mRNA were upwardly expressed. Enrichment analyses revealed that those 52 miRNAs acted as pluripotency regulators for stem cells and participated in various novel signaling pathways, including PI3K/AKT, MAPK, and etc., while 928 mRNAs played important roles in liver-functional metabolism. With an extensive sorting of those key miRNAs and mRNAs based on the target prediction results, 23 genes were obtained which not only functioned as the targets of 17 miRNAs but were considered critical for the hepatic lineage commitment. A "TF-miRNA-Target" regulatory network for hepatic lineage commitment was therefore established and had been well validated by various datasets. The network revealed that the PI3K/AKT pathway was gradually suppressed during the hepatic commitment. CONCLUSION: A total of 17 miRNAs act as suppressors during hepatic maturation mainly by regulating 23 targets and modulating the PI3K/AKT signaling pathway. The regulatory network uncovers possible signatures and guidelines enabling us to identify or obtain the functional hepatocytes for future study.

15.
J Tissue Eng ; 11: 2041731420972310, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33224464

RESUMO

Biomaterial scaffolds are increasingly being used to drive tissue regeneration. The limited success so far in human tissues rebuilding and therapy application may be due to inadequacy of the functionality biomaterial scaffold. We developed a new decellularized method to obtain complete anatomical skin biomatrix scaffold in situ with extracellular matrix (ECM) architecture preserved, in this study. We described a skin scaffold map by integrated proteomics and systematically analyzed the interaction between ECM proteins and epidermal cells in skin microenvironment on this basis. They were used to quantify structure and function of the skin's Matrisome, comprised of core ECM components and ECM-associated soluble signals that are key regulators of epidermal development. We especially revealed that ECM played a role in determining the fate of epidermal stem cells through hemidesmosome components. These concepts not only bring us a new understanding of the role of the skin ECM niche, they also provide an attractive combinational strategy based on tissue engineering principles with skin biomatrix scaffold materials for the acceleration and enhancement of tissue regeneration.

16.
Artigo em Inglês | MEDLINE | ID: mdl-32154237

RESUMO

Severe skin wounds are often associated with large areas of damaged tissue, resulting in substantial loss of fluids containing electrolytes and proteins. The net result is a vulnerability clinically to skin infections. Therapies aiming to close these large openings are effective in reducing the complications of severe skin wounds. Recently, cell transplantation therapy showed the potential for rapid re-epithelialization of severe skin wounds. Here, we show the improved effects of cell transplantation therapy using a robust protocol of efficient expansion and delivery of epidermal cells for treatment of severe skin wounds. Human skin tissues were used to generate human epidermal organoids maintained under newly established culture conditions. The human epidermal organoids showed an improved capacity of passaging for at least 10 rounds, enabling organoids to expand to cell numbers required for clinical applications. A newly designed auto micro-atomization device (AMAD) was developed for delivery of human epidermal organoids onto the sites of severe skin wounds enhancing uniform and concentrated delivery of organoids, facilitating their engraftment and differentiation for skin reconstitution. With the optimal design and using pneumatic AMAD, both survival and functions of organoids were effectively protected during the spraying process. Cells in the sprayed human epidermal organoids participated in the regeneration of the epidermis at wound sites in a mouse model and accelerated wound healing significantly. The novel AMAD and out new protocol with enhanced effects with respect to both organoid expansion and efficient transplantation will be used for clincal treatments of complex, uneven, or large-area severe skin wounds.

17.
Nat Microbiol ; 4(7): 1096-1104, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30988429

RESUMO

Current models of cell-intrinsic immunity to RNA viruses centre on virus-triggered inducible antiviral responses initiated by RIG-I-like receptors or Toll-like receptors that sense pathogen-associated molecular patterns, and signal downstream through interferon regulatory factors (IRFs), transcription factors that induce synthesis of type I and type III interferons1. RNA viruses have evolved sophisticated strategies to disrupt these signalling pathways and evade elimination by cells, attesting to their importance2. Less attention has been paid to how IRFs maintain basal levels of protection against viruses. Here, we depleted antiviral factors linked to RIG-I-like receptor and Toll-like receptor signalling to map critical host pathways restricting positive-strand RNA virus replication in immortalized hepatocytes and identified an unexpected role for IRF1. We show that constitutively expressed IRF1 acts independently of mitochondrial antiviral signalling (MAVS) protein, IRF3 and signal transducer and activator of transcription 1 (STAT1)-dependent signalling to provide intrinsic antiviral protection in actinomycin D-treated cells. IRF1 localizes to the nucleus, where it maintains the basal transcription of a suite of antiviral genes that protect against multiple pathogenic RNA viruses, including hepatitis A and C viruses, dengue virus and Zika virus. Our findings reveal an unappreciated layer of hepatocyte-intrinsic immunity to these positive-strand RNA viruses and identify previously unrecognized antiviral effector genes.


Assuntos
Expressão Gênica , Hepatócitos/imunologia , Imunidade Inata/genética , Fator Regulador 1 de Interferon/genética , Vírus de RNA/fisiologia , Animais , Núcleo Celular/metabolismo , Células Cultivadas , Fezes/virologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , Fator Regulador 1 de Interferon/metabolismo , Cinética , Fígado/virologia , Camundongos , RNA Interferente Pequeno , Transdução de Sinais/genética , Replicação Viral
18.
Cell Mol Gastroenterol Hepatol ; 7(4): 803-817, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30763770

RESUMO

BACKGROUND & AIMS: Fibrolamellar carcinoma (FLC) is a rare liver cancer that primarily affects adolescents and young adults. It is characterized by a heterozygous approximately 400-kb deletion on chromosome 19 that results in a unique fusion between DnaJ heat shock protein family member B1 (DNAJB1) and the alpha catalytic subunit of protein kinase A (PRKACA). The role of microRNAs (miRNAs) in FLC remains unclear. We identified dysregulated miRNAs in FLC and investigated whether dysregulation of 1 key miRNA contributes to FLC pathogenesis. METHODS: We analyzed small RNA sequencing (smRNA-seq) data from The Cancer Genome Atlas to identify dysregulated miRNAs in primary FLC tumors and validated the findings in 3 independent FLC cohorts. smRNA-seq also was performed on a FLC patient-derived xenograft model as well as purified cell populations of the liver to determine whether key miRNA changes were tumor cell-intrinsic. We then used clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (Cas9) technology and transposon-mediated gene transfer in mice to determine if the presence of DNAJB1-PRKACA is sufficient to suppress miR-375 expression. Finally, we established a new FLC cell line and performed colony formation and scratch wound assays to determine the functional consequences of miR-375 overexpression. RESULTS: We identified miR-375 as the most dysregulated miRNA in primary FLC tumors (27-fold down-regulation; P = .009). miR-375 expression also was decreased significantly in a FLC patient-derived xenograft model compared to 4 different cell populations of the liver. Introduction of DNAJB1-PRKACA by clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 engineering and transposon-mediated somatic gene transfer in mice was sufficient to induce significant loss of miR-375 expression (P < .05). Overexpression of miR-375 in FLC cells inhibited Hippo signaling pathway proteins, including yes-associated protein 1 and connective tissue growth factor, and suppressed cell proliferation and migration (P < .05). CONCLUSIONS: We identified miR-375 as the most down-regulated miRNA in FLC tumors and showed that overexpression of miR-375 mitigated tumor cell growth and invasive potential. These findings open a potentially new molecular therapeutic approach. Further studies are necessary to determine how DNAJB1-PRKACA suppresses miR-375 expression and whether miR-375 has additional important targets in this tumor. Transcript profiling: GEO accession numbers: GSE114974 and GSE125602.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , MicroRNAs/metabolismo , Animais , Proliferação de Células , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico HSP40/metabolismo , Humanos , Fígado/patologia , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Invasividade Neoplásica , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Nat Biomed Eng ; 2(6): 443-452, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-31011191

RESUMO

Metastatic disease remains the primary cause of mortality in cancer patients. Yet the number of available in vitro models to study metastasis is limited by challenges in the recapitulation of the metastatic microenvironment in vitro, and by difficulties in maintaining colonized-tissue specificity in the expansion and maintenance of metastatic cells. Here, we show that decellularized scaffolds that retain tissue-specific extracellular-matrix components and bound signalling molecules enable, when seeded with colorectal cancer cells, the spontaneous formation of three-dimensional cell colonies that histologically, molecularly and phenotypically resemble in vivo metastases. Lung and liver metastases obtained by culturing colorectal cancer cells on, respectively, lung and liver decellularized scaffolds retained their tissue-specific tropism when injected in mice. We also found that the engineered metastases contained signet ring cells, which has not previously been observed ex vivo. A culture system with tissue-specific decellularized scaffolds represents a simple and powerful approach for the study of organ-specific cancer metastases.


Assuntos
Técnicas de Cultura de Células/métodos , Neoplasias Colorretais , Metástase Neoplásica , Alicerces Teciduais , Células CACO-2 , Neoplasias Colorretais/patologia , Neoplasias Colorretais/fisiopatologia , Células HT29 , Humanos , Metástase Neoplásica/patologia , Metástase Neoplásica/fisiopatologia , Células Tumorais Cultivadas
20.
Nat Immunol ; 18(12): 1299-1309, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28967880

RESUMO

NLRX1 is unique among the nucleotide-binding-domain and leucine-rich-repeat (NLR) proteins in its mitochondrial localization and ability to negatively regulate antiviral innate immunity dependent on the adaptors MAVS and STING. However, some studies have suggested a positive regulatory role for NLRX1 in inducing antiviral responses. We found that NLRX1 exerted opposing regulatory effects on viral activation of the transcription factors IRF1 and IRF3, which might potentially explain such contradictory results. Whereas NLRX1 suppressed MAVS-mediated activation of IRF3, it conversely facilitated virus-induced increases in IRF1 expression and thereby enhanced control of viral infection. NLRX1 had a minimal effect on the transcription of IRF1 mediated by the transcription factor NF-kB and regulated the abundance of IRF1 post-transcriptionally by preventing translational shutdown mediated by the double-stranded RNA (dsRNA)-activated kinase PKR and thereby allowed virus-induced increases in the abundance of IRF1 protein.


Assuntos
Hepacivirus/imunologia , Hepatite C/imunologia , Imunidade Inata/imunologia , Fator Regulador 1 de Interferon/imunologia , Fator Regulador 3 de Interferon/imunologia , Proteínas Mitocondriais/imunologia , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Células Cultivadas , Ativação Enzimática/imunologia , Células HEK293 , Hepatite C/virologia , Hepatócitos/imunologia , Hepatócitos/virologia , Humanos , Fator Regulador 1 de Interferon/metabolismo , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/genética , NF-kappa B/metabolismo , RNA Viral/genética , Vírus Sendai/imunologia , eIF-2 Quinase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA