Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11103, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750093

RESUMO

Safe and effective pain management is a critical healthcare and societal need. The potential for acute liver injury from paracetamol (ApAP) overdose; nephrotoxicity and gastrointestinal damage from chronic non-steroidal anti-inflammatory drug (NSAID) use; and opioids' addiction are unresolved challenges. We developed SRP-001, a non-opioid and non-hepatotoxic small molecule that, unlike ApAP, does not produce the hepatotoxic metabolite N-acetyl-p-benzoquinone-imine (NAPQI) and preserves hepatic tight junction integrity at high doses. CD-1 mice exposed to SRP-001 showed no mortality, unlike a 70% mortality observed with increasing equimolar doses of ApAP within 72 h. SRP-001 and ApAP have comparable antinociceptive effects, including the complete Freund's adjuvant-induced inflammatory von Frey model. Both induce analgesia via N-arachidonoylphenolamine (AM404) formation in the midbrain periaqueductal grey (PAG) nociception region, with SRP-001 generating higher amounts of AM404 than ApAP. Single-cell transcriptomics of PAG uncovered that SRP-001 and ApAP also share modulation of pain-related gene expression and cell signaling pathways/networks, including endocannabinoid signaling, genes pertaining to mechanical nociception, and fatty acid amide hydrolase (FAAH). Both regulate the expression of key genes encoding FAAH, 2-arachidonoylglycerol (2-AG), cannabinoid receptor 1 (CNR1), CNR2, transient receptor potential vanilloid type 4 (TRPV4), and voltage-gated Ca2+ channel. Phase 1 trial (NCT05484414) (02/08/2022) demonstrates SRP-001's safety, tolerability, and favorable pharmacokinetics, including a half-life from 4.9 to 9.8 h. Given its non-hepatotoxicity and clinically validated analgesic mechanisms, SRP-001 offers a promising alternative to ApAP, NSAIDs, and opioids for safer pain treatment.


Assuntos
Acetaminofen , Analgésicos , Ácidos Araquidônicos , Substância Cinzenta Periaquedutal , Transcriptoma , Animais , Masculino , Camundongos , Acetaminofen/efeitos adversos , Amidoidrolases/metabolismo , Amidoidrolases/genética , Analgésicos/farmacologia , Ácidos Araquidônicos/farmacologia , Benzoquinonas/farmacologia , Glicerídeos , Substância Cinzenta Periaquedutal/metabolismo , Substância Cinzenta Periaquedutal/efeitos dos fármacos
2.
Sci Rep ; 13(1): 15841, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37740008

RESUMO

Despite efforts to identify modulatory neuroprotective mechanisms of damaging ischemic stroke cascade signaling, a void remains on an effective potential therapeutic. The present study defines neuroprotection by very long-chain polyunsaturated fatty acid (VLC-PUFA) Elovanoid (ELV) precursors C-32:6 and C-34:6 delivered intranasally following experimental ischemic stroke. We demonstrate that these precursors improved neurological deficit, decreased T2WI lesion volume, and increased SMI-71 positive blood vessels and NeuN positive neurons, indicating blood-brain barrier (BBB) protection and neurogenesis modulated by the free fatty acids (FFAs) C-32:6 and C-34:6. Gene expression revealed increased anti-inflammatory and pro-homeostatic genes and decreases in expression of pro-inflammatory genes in the subcortex. Additionally, the FFAs elicit a comprehensive downregulation of inflammatory microglia/monocyte-derived macrophages and astrocyte-associated genes in the subcortical region. Functional analysis reveals inhibition of immune-related pathways and production of upstream molecules related to detrimental signaling events in post-stroke acute and subacute phases.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Ácidos Graxos não Esterificados , Neuroproteção , Acidente Vascular Cerebral/genética , Astrócitos
3.
Cell Mol Neurobiol ; 43(7): 3555-3573, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37270727

RESUMO

Neuroprotection to attenuate or block the ischemic cascade and salvage neuronal damage has been extensively explored for treating ischemic stroke. However, despite increasing knowledge of the physiologic, mechanistic, and imaging characterizations of the ischemic penumbra, no effective neuroprotective therapy has been found. This study focuses on the neuroprotective bioactivity of docosanoid mediators: Neuroprotectin D1 (NPD1), Resolvin D1 (RvD1), and their combination in experimental stroke. Molecular targets of NPD1 and RvD1 are defined by following dose-response and therapeutic window. We demonstrated that treatment with NPD1, RvD1, and combination therapy provides high-grade neurobehavioral recovery and decreases ischemic core and penumbra volumes even when administered up to 6 h after stroke. The expression of the following genes was salient: (a) Cd163, an anti-inflammatory stroke-associated gene, was the most differentially expressed gene by NPD1+RvD1, displaying more than a 123-fold upregulation in the ipsilesional penumbra (Lisi et al., Neurosci Lett 645:106-112, 2017); (b) 100-fold upregulation takes place in astrocyte gene PTX3, a key regulator of neurogenesis and angiogenesis after cerebral ischemia (. Rodriguez-Grande et al., J Neuroinflammation 12:15, 2015); and (c) Tmem119 and P2y12, two markers of homeostatic microglia, were found to be enhanced by ten- and fivefold, respectively (Walker et al. Int J Mol Sci 21:678, 2020). Overall, we uncovered that protection after middle cerebral artery occlusion (MCAo) by the lipid mediators elicits expression of microglia and astrocyte-specific genes (Tmem119, Fcrls, Osmr, Msr1, Cd68, Cd163, Amigo2, Thbs1, and Tm4sf1) likely participating in enhancing homeostatic microglia, modulating neuroinflammation, promoting DAMP clearance, activating NPC differentiation and maturation, synapse integrity and contributing to cell survival.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , AVC Isquêmico/metabolismo , Microglia/metabolismo , Astrócitos/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Isquemia Encefálica/metabolismo
4.
Res Sq ; 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37205420

RESUMO

The safe and effective management of pain is a critical healthcare and societal need. The potential for misuse and addiction associated with opioids, nephrotoxicity, and gastrointestinal damage from chronic non-steroidal anti-inflammatory drug (NSAID) use, as well as acute liver injury from paracetamol (ApAP) overdose, are unresolved challenges. To address them, we developed a non-opioid and non-hepatotoxic small molecule, SRP-001. Compared to ApAP, SRP-001 is not hepatotoxic as it does not produce N-acetyl-p-benzoquinone-imine (NAPQI) and maintains hepatic tight junction integrity at high doses. SRP-001 has comparable analgesia in pain models, including the complete Freund's adjuvant (CFA) inflammatory von Frey. Both induce analgesia via N-arachidonoylphenolamine (AM404) formation in the midbrain periaqueductal grey (PAG) nociception area, with SRP-001 generating higher amounts of AM404 than ApAP. Single-cell transcriptomics of PAG uncovered that SRP-001 and ApAP also share modulation of pain-related gene expression and cell signaling pathways, including the endocannabinoid, mechanical nociception, and fatty acid amide hydrolase (FAAH) pathways. Both regulate the expression of key genes encoding FAAH, 2-AG, CNR1, CNR2, TRPV4, and voltage-gated Ca2+ channel. Interim Phase 1 trial results demonstrate SRP-001's safety, tolerability, and favorable pharmacokinetics (NCT05484414). Given its non-hepatotoxicity and clinically validated analgesic mechanisms, SRP-001 offers a promising alternative to ApAP, NSAIDs, and opioids for safer pain treatment.

5.
Med Res Arch ; 11(1)2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36777192

RESUMO

Despite displaying efficacy in experimental stroke studies, neuroprotection has failed in clinical trials. The translational difficulties include a limited methodological agreement between preclinical and clinical studies and the heterogeneity of stroke in humans compared to standardized strokes in animal models. Promising neuroprotective approaches based on a deeper understanding of the complex pathophysiology of ischemic stroke, such as blocking pro-inflammatory pathways plus pro-survival mediators, are now evaluated in preclinical studies. Combinatorial therapy has become increasingly attractive in recent years as recognizing the complexity of stroke progression becomes evident. The paper aimed to test the hypothesis that blocking pro-inflammatory platelet-activating factor receptor (PAF-R) with LAU-0901 plus administering a selected docosanoid, aspirin-triggered neuroprotectin D1 (AT-NPD1), which activates cell-survival pathways after middle cerebral artery occlusion (MCAo), would lead to neurological recovery. We have demonstrated that LAU-0901 plus AT-NPD1 treatment affords high-grade neuroprotection in MCAo, equaling or exceeding that afforded by LAU-0901 or AT-NPD1 alone at considerably moderate doses, and it has a broad therapeutic window extending to 6 hours after stroke onset.

6.
J Stroke Cerebrovasc Dis ; 31(8): 106585, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35717719

RESUMO

OBJECTIVE: We tested the hypothesis that blocking pro-inflammatory platelet-activating factor receptor (PAFR) with LAU-0901 (LAU) plus administering a selected docosanoid, aspirin-triggered neuroprotectin D1 (AT-NPD1), which activates cell-survival pathways after middle cerebral artery occlusion (MCAo), would lead to neurological recovery. Dose-response and therapeutic window were investigated. MATERIALS AND METHODS: Male SD rats were subjected to 2 hours of MCAo. Behavior testing (days 1-7) and ex vivo MRI on day 7 were conducted. In dose-response, rats were treated with LAU (45 and 60 mg/kg; IP), AT-NPD1 (111, 222, 333 µg/kg; IV), LAU+AT-NPD1 (LAU at 3 hours and AT-NPD1 at 3.15 hours) or vehicle. In the therapeutic window, vehicle, LAU (60 mg/kg), AT-NPD1 (222 µg/kg), and LAU+AT-NPD1 were administered at 3, 4, 5, and 6 hours after onset of MCAo. RESULTS: LAU and AT-NPD1 treatments alone improved behavior by 40-42% and 20-30%, respectively, and LAU+AT-NPD1 by 40% compared to the vehicle group. T2-weighted imaging (T2WI) volumes were reduced with all doses of LAU and AT-NPD1 by 73-90% and 67-83% and LAU+AT-NPD1 by 94% compared to vehicle. In the therapeutic window, LAU+AT-NPD1, when administered at 3, 4, 5, and 6 hours, improved behavior by 50, 56, 33, and 26% and reduced T2WI volumes by 93, 90, 82, and 84% compared to vehicle. CONCLUSIONS: We have shown here for the first time that LAU plus AT-NPD1 treatment affords high-grade neuroprotection in MCAo, equaling or exceeding that afforded by LAU or AT-NPD1 alone at considerably moderate doses. It has a broad therapeutic window extending to 6 hours after stroke onset.


Assuntos
AVC Isquêmico , Fármacos Neuroprotetores , Acidente Vascular Cerebral , Animais , Aspirina/uso terapêutico , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Infarto da Artéria Cerebral Média/tratamento farmacológico , Masculino , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/etiologia
7.
Front Pharmacol ; 12: 746470, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630114

RESUMO

Glioblastoma multiforme (GBM) is an aggressive, highly proliferative, invasive brain tumor with a poor prognosis and low survival rate. The current standard of care for GBM is chemotherapy combined with radiation following surgical intervention, altogether with limited efficacy, since survival averages 18 months. Improvement in treatment outcomes for patients with GBM requires a multifaceted approach due to the dysregulation of numerous signaling pathways. Recently emerging therapies to precisely modulate tumor angiogenesis, inflammation, and oxidative stress are gaining attention as potential options to combat GBM. Using a mouse model of GBM, this study aims to investigate Avastin (suppressor of vascular endothelial growth factor and anti-angiogenetic treatment), LAU-0901 (a platelet-activating factor receptor antagonist that blocks pro-inflammatory signaling), Elovanoid; ELV, a novel pro-homeostatic lipid mediator that protects neural cell integrity and their combination as an alternative treatment for GBM. Female athymic nude mice were anesthetized with ketamine/xylazine, and luciferase-modified U87MG tumor cells were stereotactically injected into the right striatum. On post-implantation day 13, mice received one of the following: LAU-0901, ELV, Avastin, and all three compounds in combination. Bioluminescent imaging (BLI) was performed on days 13, 20, and 30 post-implantation. Mice were perfused for ex vivo MRI on day 30. Bioluminescent intracranial tumor growth percentage was reduced by treatments with LAU-0901 (43%), Avastin (77%), or ELV (86%), individually, by day 30 compared to saline treatment. In combination, LAU-0901/Avastin, ELV/LAU-0901, or ELV/Avastin had a synergistic effect in decreasing tumor growth by 72, 92, and 96%, respectively. Additionally, tumor reduction was confirmed by MRI on day 30, which shows a decrease in tumor volume by treatments with LAU-0901 (37%), Avastin (67%), or ELV (81.5%), individually, by day 30 compared to saline treatment. In combination, LAU-0901/Avastin, ELV/LAU-0901, or ELV/Avastin had a synergistic effect in decreasing tumor growth by 69, 78.7, and 88.6%, respectively. We concluded that LAU-0901 and ELV combined with Avastin exert a better inhibitive effect in GBM progression than monotherapy. To our knowledge, this is the first study that demonstrates the efficacy of these novel therapeutic regimens in a model of GBM and may provide the basis for future therapeutics in GBM patients.

8.
Cancer Metastasis Rev ; 40(3): 643-647, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34519960

RESUMO

Glioblastoma multiforme (GBM) is the most invasive type of glial tumor with poor overall survival, despite advances in surgical resection, chemotherapy, and radiation. One of the main challenges in treating GBM is related to the tumor's location, complex and heterogeneous biology, and high invasiveness. To meet the demand for oxygen and nutrients, growing tumors induce new blood vessels growth. Antibodies directed against vascular endothelial growth factor (VEGF), which promotes angiogenesis, have been developed to limit tumor growth. Bevacizumab (Avastin), an anti-VEGF monoclonal antibody, is the first approved angiogenesis inhibitor with therapeutic promise. However, it has limited efficacy, likely due to adaptive mutations in GBM, leading to overall survival compared to the standard of care in GBM patients. Molecular connections between angiogenesis, inflammation, oxidative stress pathways, and the development of gliomas have been recognized. Improvement in treatment outcomes for patients with GBM requires a multifaceted approach due to the converging dysregulation of signaling pathways. While most GBM clinical trials focus on "anti-angiogenic" modalities, stimulating inflammation resolution is a novel host-centric therapeutic avenue. The selective therapeutic possibilities for targeting the tumor microenvironment, specifically angiogenic and inflammatory pathways expand. So, a combination of agents aiming to interfere with several mechanisms might be beneficial to improve outcomes. Our approach might also be combined with other therapies to enhance sustained effectiveness. Here, we discuss Suramab (anti-angiogenic), LAU-0901 (a platelet-activating factor receptor antagonist), Elovanoid (ELV; a novel lipid mediator), and their combination as potential alternatives to contain GBM growth and invasiveness.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Inibidores da Angiogênese/uso terapêutico , Bevacizumab/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Homeostase , Humanos , Neovascularização Patológica/tratamento farmacológico , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular/uso terapêutico
9.
CNS Neurosci Ther ; 26(11): 1155-1167, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32757264

RESUMO

AIMS: Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a secretory neurotrophic factor protein that promotes repair after neuronal injury. The microglia cell surface receptor (triggering receptor expressed on myeloid cells-2; TREM2) regulates the production of pro- and antiinflammatory mediators after stroke. Here, we study MANF and TREM2 expression after middle cerebral artery occlusion (MCAo) and explore if docosahexaenoic acid (DHA) treatment exerts a potentiating effect. METHODS: We used 2 hours of the MCAo model in rats and intravenously administered DHA or vehicle at 3 hours after the onset of MCAo. Neurobehavioral assessment was performed on days 1, 3, 7, and 14; MANF and TREM2 expression was measured by immunohistochemistry and Western blotting. RESULTS: MANF was upregulated in neurons and astrocytes on days 1, 7, and 14, and TREM2 was expressed on macrophages in the ischemic penumbra and dentate gyrus (DG) on days 7 and 14. DHA improved neurobehavioral recovery, attenuated infarct size on days 7 and 14, increased MANF and decreased TREM2 expression in ischemic core, penumbra, DG, and enhanced neurogenesis on Day 14. CONCLUSION: MANF and TREM2 protein abundance is robustly increased after MCAo, and DHA treatment potentiated MANF abundance, decreased TREM2 expression, improved neurobehavioral recovery, reduced infarction, and provided enhanced neuroprotection.


Assuntos
Isquemia Encefálica/metabolismo , Ácidos Docosa-Hexaenoicos/administração & dosagem , AVC Isquêmico/metabolismo , Glicoproteínas de Membrana/biossíntese , Fatores de Crescimento Neural/biossíntese , Neurogênese/efeitos dos fármacos , Receptores Imunológicos/biossíntese , Administração Intravenosa , Animais , Isquemia Encefálica/tratamento farmacológico , Infarto Cerebral/tratamento farmacológico , Infarto Cerebral/metabolismo , AVC Isquêmico/tratamento farmacológico , Masculino , Glicoproteínas de Membrana/antagonistas & inibidores , Fatores de Crescimento Neural/agonistas , Neurogênese/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores Imunológicos/antagonistas & inibidores
10.
Brain Circ ; 6(4): 260-268, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33506149

RESUMO

OBJECTIVE: Acute ischemic stroke triggers complex neurovascular, neuroinflammatory, and synaptic alterations. This study explores whether blocking pro-inflammatory platelet-activating factor receptor (PAF-R) plus selected docosanoids after middle cerebral artery occlusion (MCAo) would lead to neurological recovery. The following small molecules were investigated: (a) LAU-0901, a PAF-R antagonist that blocks pro-inflammatory signaling; and (b) derivatives of docosahexaenoic acid (DHA), neuroprotectin D1 (NPD1), and aspirin-triggered NPD1 (AT-NPD1), which activates cell survival pathways and are exert potent anti-inflammatory activity in the brain. MATERIALS AND METHODS: Sprague-Dawley rats received 2 h MCAo and LAU-0901 (30 or 60 mg/kg, 2 h after stroke), NPD1, and AT-NPD1 (333 µg/kg), DHA (5 mg/kg), and their combination were administered intravenous at 3 h after stroke. Behavior testing and ex vivo magnetic resonance imaging were conducted on day 3 or 14 to assess lesion characteristics and lipidomic analysis on day 1. Series 1 (LAU-0901 + NPD1, 14d), Series 2 (LAU-0901 + AT-NPD1, 3d), and Series 3 (LAU-0901 + DHA, 1d). RESULTS: All combinatory groups improved behavior compared to NPD1, AT-NPD1, or DHA treatments alone. Total lesion volumes were reduced with LAU-0901 + NPD1 by 62% and LAU-0901 + AT-NPD1 by 90% treatments versus vehicle groups. LAU-0901 and LAU-0901 + DHA increased the production of vasoactive lipid mediators (prostaglandins: PGE2, PGF2- α, 6-keto-PGF1- α, and PGD2) as well an inflammatory regulating mediator hydroxyoctadecadienoic acid. In contrast, LAU-0901 and LAU-0901 + DHA decreased the production of 12-hydroxyeicosatetraenoic acid, a pro-inflammatory mediator. CONCLUSION: Combination therapy with LAU-0901 and selected docosanoids is more effective than the single therapy, affording synergistic neuroprotection, with restored pro-homeostatic lipid mediators and improved neurological recovery. Altogether, our findings support the combinatory therapy as the basis for future therapeutics for ischemic stroke.

11.
PLoS One ; 14(7): e0219784, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31295328

RESUMO

Oxytocin is involved in the regulation of social behaviors including parental behaviors in a variety of species. Oxytocin triggers social behaviors by binding to oxytocin receptors (OXTRs) in various parts of the brain. OXTRs are present in the preoptic area (POA) where hormone-sensitive sexually dimorphic nuclei exist. The present study was conducted to examine whether sex differences exist in the distribution of neurons expressing OXTRs in the POA. Using OXTR-Venus (an enhanced variant of yellow fluorescent protein) mice, the distribution of OXTR-Venus cells in the POA was compared between sexes. The total number of OXTR-Venus cells in the medial POA (MPOA) was significantly greater in females than in males. No detectable OXTR-Venus cells were observed in the anteroventral periventricular nucleus (AVPV) within the MPOA in most of the brain sections from males. We further examined the total number of OXTR-Venus cells in the AVPV and the rest of the MPOA between the sexes. The total number of OXTR-Venus cells in the AVPV in females (615 ± 43) was significantly greater than that in males (14 ± 2), whereas the total number of OXTR-Venus cells in the rest of the MPOA did not differ significantly between the sexes. Thus, the sexually dimorphic expression of OXTR-Venus specifically occurred in the AVPV, but not in the rest of the MPOA. We also examined whether the expression of OXTR in the AVPV is driven by the female gonadal hormone, estrogen. Immunocytochemistry and single-cell RT-PCR revealed the presence of the estrogen receptor α in OXTR-Venus cells in the female AVPV. Moreover, ovariectomy resulted in the absence of OXTR-Venus expression in the AVPV, whereas estrogen replacement therapy restored OXTR-Venus expression. These results demonstrate that the expression of OXTR in the AVPV is primarily female specific and estrogen dependent. The presence of the sexually dimorphic expression of OXTR in the AVPV suggests the involvement of OXTR neurons in the AVPV in the regulation of female-specific behavior and/or physiology.


Assuntos
Estrogênios/metabolismo , Neurônios/metabolismo , Ocitocina/genética , Receptores de Ocitocina/genética , Animais , Feminino , Regulação da Expressão Gênica/genética , Hipotálamo Anterior/crescimento & desenvolvimento , Hipotálamo Anterior/metabolismo , Masculino , Camundongos , Ocitocina/metabolismo , Caracteres Sexuais , Comportamento Sexual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA