Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heredity (Edinb) ; 114(3): 318-26, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25388142

RESUMO

Genome-wide mapping approaches in diverse populations are powerful tools to unravel the genetic architecture of complex traits. The main goals of our study were to investigate the potential and limits to unravel the genetic architecture and to identify the factors determining the accuracy of prediction of the genotypic variation of Fusarium head blight (FHB) resistance in wheat (Triticum aestivum L.) based on data collected with a diverse panel of 372 European varieties. The wheat lines were phenotyped in multi-location field trials for FHB resistance and genotyped with 782 simple sequence repeat (SSR) markers, and 9k and 90k single-nucleotide polymorphism (SNP) arrays. We applied genome-wide association mapping in combination with fivefold cross-validations and observed surprisingly high accuracies of prediction for marker-assisted selection based on the detected quantitative trait loci (QTLs). Using a random sample of markers not selected for marker-trait associations revealed only a slight decrease in prediction accuracy compared with marker-based selection exploiting the QTL information. The same picture was confirmed in a simulation study, suggesting that relatedness is a main driver of the accuracy of prediction in marker-assisted selection of FHB resistance. When the accuracy of prediction of three genomic selection models was contrasted for the three marker data sets, no significant differences in accuracies among marker platforms and genomic selection models were observed. Marker density impacted the accuracy of prediction only marginally. Consequently, genomic selection of FHB resistance can be implemented most cost-efficiently based on low- to medium-density SNP arrays.


Assuntos
Resistência à Doença/genética , Fusarium , Locos de Características Quantitativas , Triticum/genética , Cruzamento , Estudos de Associação Genética , Marcadores Genéticos , Genótipo , Modelos Lineares , Repetições de Microssatélites , Modelos Genéticos , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Seleção Genética , Triticum/microbiologia
2.
Heredity (Edinb) ; 112(6): 638-45, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24518889

RESUMO

Based on data from field trials with a large collection of 135 elite winter wheat inbred lines and 1604 F1 hybrids derived from them, we compared the accuracy of prediction of marker-assisted selection and current genomic selection approaches for the model traits heading time and plant height in a cross-validation approach. For heading time, the high accuracy seen with marker-assisted selection severely dropped with genomic selection approaches RR-BLUP (ridge regression best linear unbiased prediction) and BayesCπ, whereas for plant height, accuracy was low with marker-assisted selection as well as RR-BLUP and BayesCπ. Differences in the linkage disequilibrium structure of the functional and single-nucleotide polymorphism markers relevant for the two traits were identified in a simulation study as a likely explanation for the different trends in accuracies of prediction. A new genomic selection approach, weighted best linear unbiased prediction (W-BLUP), designed to treat the effects of known functional markers more appropriately, proved to increase the accuracy of prediction for both traits and thus closes the gap between marker-assisted and genomic selection.


Assuntos
Genoma de Planta , Característica Quantitativa Herdável , Seleção Genética , Triticum/genética , Alelos , Cruzamento , Conjuntos de Dados como Assunto , Marcadores Genéticos , Variação Genética , Genótipo , Hibridização Genética , Desequilíbrio de Ligação , Modelos Genéticos , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Reprodutibilidade dos Testes
3.
Heredity (Edinb) ; 112(5): 552-61, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24346498

RESUMO

The accuracy of genomic selection depends on the relatedness between the members of the set in which marker effects are estimated based on evaluation data and the types for which performance is predicted. Here, we investigate the impact of relatedness on the performance of marker-assisted selection for fungal disease resistance in hybrid wheat. A large and diverse mapping population of 1739 elite European winter wheat inbred lines and hybrids was evaluated for powdery mildew, leaf rust and stripe rust resistance in multi-location field trials and fingerprinted with 9 k and 90 k SNP arrays. Comparison of the accuracies of prediction achieved with data sets from the two marker arrays revealed a crucial role for a sufficiently high marker density in genome-wide association mapping. Cross-validation studies using test sets with varying degrees of relationship to the corresponding estimation sets revealed that close relatedness leads to a substantial increase in the proportion of total genotypic variance explained by the identified QTL and consequently to an overoptimistic judgment of the precision of marker-assisted selection.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Locos de Características Quantitativas/genética , Triticum/genética , Ascomicetos/fisiologia , Basidiomycota/fisiologia , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Genes de Plantas/genética , Marcadores Genéticos/genética , Estudo de Associação Genômica Ampla/métodos , Genótipo , Interações Hospedeiro-Patógeno/genética , Hibridização Genética , Endogamia , Fenótipo , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes , Triticum/microbiologia
4.
Heredity (Edinb) ; 110(1): 71-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23047199

RESUMO

Family mapping is based on multiple segregating families and is becoming increasingly popular because of its advantages over population mapping. Athough much progress has been made recently, the optimum design and allocation of resources for family mapping remains unclear. Here, we addressed these issues using a simulation study, resample model averaging and cross-validation approaches. Our results show that in family mapping, the predictive power and the accuracy of quatitative trait loci (QTL) detection depend greatly on the population size and phenotyping intensity. With small population sizes or few test environments, QTL results become unreliable and are hampered by a large bias in the estimation of the proportion of genotypic variance explained by the detected QTL. In addition, we observed that even though good results can be achieved with low marker densities, no plateau is reached with our full marker complement. This suggests that higher quality results could be achieved with greater marker densities or sequence data, which will be available in the near future for many species.


Assuntos
Cruzamentos Genéticos , Genética Populacional , Modelos Genéticos , Plantas/genética , Simulação por Computador , Estudos de Associação Genética/métodos , Genótipo , Desequilíbrio de Ligação , Locos de Características Quantitativas , Reprodutibilidade dos Testes , Sementes/genética
5.
Heredity (Edinb) ; 108(3): 332-40, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21878984

RESUMO

Joint linkage association mapping (JLAM) combines the advantages of linkage mapping and association mapping, and is a powerful tool to dissect the genetic architecture of complex traits. The main goal of this study was to use a cross-validation strategy, resample model averaging and empirical data analyses to compare seven different biometrical models for JLAM with regard to the correction for population structure and the quantitative trait loci (QTL) detection power. Three linear models and four linear mixed models with different approaches to control for population stratification were evaluated. Models A, B and C were linear models with either cofactors (Model-A), or cofactors and a population effect (Model-B), or a model in which the cofactors and the single-nucleotide polymorphism effect were modeled as nested within population (Model-C). The mixed models, D, E, F and G, included a random population effect (Model-D), or a random population effect with defined variance structure (Model-E), a kinship matrix defining the degree of relatedness among the genotypes (Model-F), or a kinship matrix and principal coordinates (Model-G). The tested models were conceptually different and were also found to differ in terms of power to detect QTL. Model-B with the cofactors and a population effect, effectively controlled population structure and possessed a high predictive power. The varying allele substitution effects in different populations suggest as a promising strategy for JLAM to use Model-B for the detection of QTL and then to estimate their effects by applying Model-C.


Assuntos
Mapeamento Cromossômico , Ligação Genética , Modelos Genéticos , Modelos Estatísticos , Beta vulgaris/genética , Genótipo , Desequilíbrio de Ligação , Locos de Características Quantitativas , Reprodutibilidade dos Testes
6.
Theor Appl Genet ; 120(2): 291-9, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19669632

RESUMO

Broadening the genetic base of heterotic pools is a key to ensure continued genetic gains in hybrid breeding and extend hybrid cultivation to new areas. In the present study, two Central European heterotic pools (Carsten and Petkus) and five Eastern European open-pollinated varieties (OPVs, Pop-1 to Pop-5) were studied with the objectives to (1) investigate the genetic diversity in OPVs and the heterotic pools using molecular and field data, (2) evaluate the molecular diversity among OPVs, (3) examine the combining ability for grain yield of the OPVs when crossed with testers in field trials, and (4) develop a strategy for targeted introgression of OPV germplasm into the heterotic pools. In total, 610 S(0) plants, 347 from OPVs and 263 from heterotic pools, were developed. Clones of the S(0) plants of OPVs were crossed with two testers belonging to each heterotic pool, while clones of heterotic pools were crossed with only the opposite tester. Testcrosses were evaluated for grain yield in multi-location trials. In addition, 589 S(0) plants were fingerprinted with 30 SSR markers. The data revealed that the Carsten pool has a narrow genetic base and should be the primary target for broadening the established heterotic pattern. Mean and genetic variance suggested that Pop-2 and Pop-4 are good candidates for introgression in Petkus pool and Pop-5 in Carsten pool. Nevertheless, introgression of Pop-5 in Carsten could reduce the genetic diversity between heterotic pools. Therefore, we suggest that either selected plants of Pop-5 should be introgressed or more Eastern European germplasm should be fingerprinted and field evaluated to identify promising germplasm for broadening the established heterotic pattern.


Assuntos
Vigor Híbrido , Hibridização Genética , Secale/genética , Europa (Continente) , Marcadores Genéticos , Variação Genética
7.
Ann Bot ; 100(6): 1315-21, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17881337

RESUMO

BACKGROUND AND AIMS: Chilling-stress tolerance is a prerequisite for maize production under cool climatic conditions. The main goal of this study was to evaluate the Central European dent and flint pools for chilling tolerance during heterotrophic and early autotrophic growth in field trials and growth chamber experiments. METHODS: Five European flint and five dent inbreds and their 25 factorial crosses were evaluated in six natural environments, where chilling occurred, for chlorophyll concentration and plant height at the three-leaf stage, and plant height and fresh weight at the seven-leaf stage. In growth chambers, leaf 3 growth was analysed under cold and control conditions. KEY RESULTS: Comparing the field and growth chamber data, the strongest association was found between leaf elongation rate during cold nights and plant height at the three-leaf stage, with a weaker association with the seven-leaf stage. In the field, moderate correlations were observed between plant height at the three-leaf stage, and plant height and fresh weight at the seven-leaf stage, respectively. Furthermore, mid-parent and hybrid performance were only moderately correlated. CONCLUSIONS: The results suggest that heterotrophic and early autotrophic growth stages are controlled by different genetic factors or that maternal effects play a role. In addition, the findings showed that mid-parent performance is a poor predictor of hybrid performance. Consequently, test cross performance should be the target in quantitiative trait locus (QTL) mapping studies with the final goal of establishing marker-assisted breeding programmes for chilling-tolerant hybrids.


Assuntos
Adaptação Fisiológica/fisiologia , Temperatura Baixa , Zea mays/crescimento & desenvolvimento , Adaptação Fisiológica/genética , Clorofila/metabolismo , Cruzamentos Genéticos , Europa (Continente) , Locos de Características Quantitativas/genética , Temperatura , Zea mays/genética , Zea mays/metabolismo
8.
Genetics ; 176(3): 1931-4, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17507673

RESUMO

We present a theoretical proof that the ratio of the dominance vs. the additive variance decreases with increasing genetic divergence between two populations. While the dominance variance is the major component of the variance due to specific combining ability (sigma(SCA)(2)), the additive variance is the major component of the variance due to general combining ability (sigma(GCA)(2)). Therefore, we conclude that interpopulation improvement becomes more efficient with divergent than with genetically similar heterotic groups, because performance of superior hybrids can be predicted on the basis of general combining ability effects.


Assuntos
Variação Genética , Genética Populacional , Quimera , Padrões de Herança , Modelos Genéticos
9.
Theor Appl Genet ; 113(2): 177-85, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16791685

RESUMO

Mexican races of maize (Zea mays L.) represent a valuable genetic resource for breeding and genetic surveys. We applied simple sequence repeat (SSR) markers to characterize 25 accessions of races of maize from Mexico. Our objectives were to (1) study the molecular genetic diversity within and among these accessions and (2) examine their relationships as assumed previously on the basis of morphological data. A total of 497 individuals were fingerprinted with 25 SSR markers. We observed a high total number of alleles (7.84 alleles per locus) and total gene diversity (0.61), confirming the broad genetic base of the maize races from Mexico. In addition, the accessions were grouped into distinct racial complexes on the basis of a model-based clustering approach. The principal coordinate analyses of the four Modern Incipient hybrids corroborated the proposed parental races of Chalqueño, Cónico Norteño, Celaya, and Bolita on the basis of the morphological data. Consequently, for some of the accessions, hybridizations provide a clue that can further be used to explain the associations among the Mexican races of maize.


Assuntos
Marcadores Genéticos , Zea mays/genética , Alelos , Variação Genética
10.
Theor Appl Genet ; 110(5): 859-64, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15690175

RESUMO

It has been claimed that plant breeding reduces genetic diversity in elite germplasm which could seriously jeopardize the continued ability to improve crops. The main objective of this study was to examine the loss of genetic diversity in spring bread wheat during (1) its domestication, (2) the change from traditional landrace cultivars (LCs) to modern breeding varieties, and (3) 50 years of international breeding. We studied 253 CIMMYT or CIMMYT-related modern wheat cultivars, LCs, and Triticum tauschii accessions, the D-genome donor of wheat, with 90 simple sequence repeat (SSR) markers dispersed across the wheat genome. A loss of genetic diversity was observed from T. tauschii to the LCs, and from the LCs to the elite breeding germplasm. Wheat's genetic diversity was narrowed from 1950 to 1989, but was enhanced from 1990 to 1997. Our results indicate that breeders averted the narrowing of the wheat germplasm base and subsequently increased the genetic diversity through the introgression of novel materials. The LCs and T. tauschii contain numerous unique alleles that were absent in modern spring bread wheat cultivars. Consequently, both the LCs and T. tauschii represent useful sources for broadening the genetic base of elite wheat breeding germplasm.


Assuntos
Cruzamento , Variação Genética , Filogenia , Triticum/genética , Análise por Conglomerados , Impressões Digitais de DNA , Frequência do Gene , Marcadores Genéticos/genética , Genótipo , Especificidade da Espécie
11.
Theor Appl Genet ; 107(5): 947-57, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12830388

RESUMO

Heterotic groups and patterns are of fundamental importance in hybrid breeding. The objectives of our research were to: (1) investigate the relationship of simple sequence repeats (SSR) based genetic distances between populations and panmictic midparent heterosis (PMPH) in a broad range of CIMMYT maize germplasm, (2) evaluate the usefulness of SSR markers for defining heterotic groups and patterns in subtropical germplasm, and (3) examine applications of SSR markers for broadening heterotic groups by systematic introgression of other germplasm. Published data of two diallels and one factorial evaluated for grain yield were re-analyzed to calculate the PMPH in population hybrids. Additionally, 20 pools and populations widely used in CIMMYT's breeding program were assayed with 83 SSR markers covering the entire maize genome. Correlations of squared modified Roger's distance (MRD(2)) and PMPH were mostly positive and significant, but adaption problems caused deviations in some cases. For intermediate- and early-maturity subtropical germplasm, two heterotic groups could be suggested consisting of a flint and dent composite. We concluded that the relationships between the populations obtained by SSR analyses are in excellent agreement with pedigree information. SSR markers are a valuable complementation to field trials for identifying heterotic groups and can be used to introgress exotic germplasm systematically.


Assuntos
Variação Genética , Sequências Repetitivas de Ácido Nucleico , Zea mays/genética , Alelos , Fenótipo , Zea mays/classificação , Zea mays/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA