Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 309
Filtrar
1.
Nat Commun ; 15(1): 4083, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744825

RESUMO

Energetic stress compels cells to evolve adaptive mechanisms to adjust their metabolism. Inhibition of mTOR kinase complex 1 (mTORC1) is essential for cell survival during glucose starvation. How mTORC1 controls cell viability during glucose starvation is not well understood. Here we show that the mTORC1 effectors eukaryotic initiation factor 4E binding proteins 1/2 (4EBP1/2) confer protection to mammalian cells and budding yeast under glucose starvation. Mechanistically, 4EBP1/2 promote NADPH homeostasis by preventing NADPH-consuming fatty acid synthesis via translational repression of Acetyl-CoA Carboxylase 1 (ACC1), thereby mitigating oxidative stress. This has important relevance for cancer, as oncogene-transformed cells and glioma cells exploit the 4EBP1/2 regulation of ACC1 expression and redox balance to combat energetic stress, thereby supporting transformation and tumorigenicity in vitro and in vivo. Clinically, high EIF4EBP1 expression is associated with poor outcomes in several cancer types. Our data reveal that the mTORC1-4EBP1/2 axis provokes a metabolic switch essential for survival during glucose starvation which is exploited by transformed and tumor cells.


Assuntos
Acetil-CoA Carboxilase , Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Ciclo Celular , Sobrevivência Celular , Ácidos Graxos , Glucose , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Glucose/metabolismo , Acetil-CoA Carboxilase/metabolismo , Acetil-CoA Carboxilase/genética , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Ácidos Graxos/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Camundongos , NADP/metabolismo , Biossíntese de Proteínas , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Estresse Oxidativo , Linhagem Celular Tumoral , Fatores de Iniciação em Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos/genética
2.
Nat Rev Dis Primers ; 10(1): 33, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724526

RESUMO

Gliomas are primary brain tumours that are thought to develop from neural stem or progenitor cells that carry tumour-initiating genetic alterations. Based on microscopic appearance and molecular characteristics, they are classified according to the WHO classification of central nervous system (CNS) tumours and graded into CNS WHO grades 1-4 from a low to high grade of malignancy. Diffusely infiltrating gliomas in adults comprise three tumour types with distinct natural course of disease, response to treatment and outcome: isocitrate dehydrogenase (IDH)-mutant and 1p/19q-codeleted oligodendrogliomas with the best prognosis; IDH-mutant astrocytomas with intermediate outcome; and IDH-wild-type glioblastomas with poor prognosis. Pilocytic astrocytoma is the most common glioma in children and is characterized by circumscribed growth, frequent BRAF alterations and favourable prognosis. Diffuse gliomas in children are divided into clinically indolent low-grade tumours and high-grade tumours with aggressive behaviour, with histone 3 K27-altered diffuse midline glioma being the leading cause of glioma-related death in children. Ependymal tumours are subdivided into biologically and prognostically distinct types on the basis of histology, molecular biomarkers and location. Although surgery, radiotherapy and alkylating agent chemotherapy are the mainstay of glioma treatment, individually tailored strategies based on tumour-intrinsic dominant signalling pathways have improved outcome in subsets of patients.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Glioma/genética , Glioma/fisiopatologia , Glioma/terapia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/fisiopatologia , Prognóstico , Criança , Isocitrato Desidrogenase/genética , Mutação
4.
Front Oncol ; 14: 1342114, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38357209

RESUMO

The methylation status of the O6-methylguanine DNA methyltransferase (MGMT) promoter region is a critical predictor of response to alkylating agents in glioblastoma. However, current approaches to study the MGMT status focus on analyzing models with non-identical backgrounds. Here, we present an epigenetic editing approach using CRISPRoff to introduce site-specific CpG methylation in the MGMT promoter region of glioma cell lines. Sanger sequencing revealed successful introduction of methylation, effectively generating differently methylated glioma cell lines with an isogenic background. The introduced methylation resulted in reduced MGMT mRNA and protein levels. Furthermore, the cell lines with MGMT promoter region methylation exhibited increased sensitivity to temozolomide, consistent with the impact of methylation on treatment outcomes in patients with glioblastoma. This precise epigenome-editing approach provides valuable insights into the functional relevance of MGMT promoter regional methylation and its potential for prognostic and predictive assessments, as well as epigenetic-targeted therapies.

5.
Acta Neuropathol ; 147(1): 11, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38183430

RESUMO

Prognostic factors and standards of care for astrocytoma, isocitrate dehydrogenase (IDH)-mutant, CNS WHO grade 4, remain poorly defined. Here we sought to explore disease characteristics, prognostic markers, and outcome in patients with this newly defined tumor type. We determined molecular biomarkers and assembled clinical and outcome data in patients with IDH-mutant astrocytomas confirmed by central pathology review. Patients were identified in the German Glioma Network cohort study; additional cohorts of patients with CNS WHO grade 4 tumors were identified retrospectively at two sites. In total, 258 patients with IDH-mutant astrocytomas (114 CNS WHO grade 2, 73 CNS WHO grade 3, 71 CNS WHO grade 4) were studied. The median age at diagnosis was similar for all grades. Karnofsky performance status at diagnosis inversely correlated with CNS WHO grade (p < 0.001). Despite more intensive treatment upfront with higher grade, CNS WHO grade was strongly prognostic: median overall survival was not reached for grade 2 (median follow-up 10.4 years), 8.1 years (95% CI 5.4-10.8) for grade 3, and 4.7 years (95% CI 3.4-6.0) for grade 4. Among patients with CNS WHO grade 4 astrocytoma, median overall survival was 5.5 years (95% CI 4.3-6.7) without (n = 58) versus 1.8 years (95% CI 0-4.1) with (n = 12) homozygous CDKN2A deletion. Lower levels of global DNA methylation as detected by LINE-1 methylation analysis were strongly associated with CNS WHO grade 4 (p < 0.001) and poor outcome. MGMT promoter methylation status was not prognostic for overall survival. Histomolecular stratification based on CNS WHO grade, LINE-1 methylation level, and CDKN2A status revealed four subgroups of patients with significantly different outcomes. In conclusion, CNS WHO grade, global DNA methylation status, and CDKN2A homozygous deletion are prognostic in patients with IDH-mutant astrocytoma. Combination of these parameters allows for improved prediction of outcome. These data aid in designing upcoming trials using IDH inhibitors.


Assuntos
Astrocitoma , Isocitrato Desidrogenase , Humanos , Astrocitoma/genética , Astrocitoma/terapia , Estudos de Coortes , Homozigoto , Isocitrato Desidrogenase/genética , Prognóstico , Estudos Retrospectivos , Deleção de Sequência
6.
Eur J Cancer ; 198: 113475, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159337

RESUMO

BACKGROUND: Zotiraciclib (TG02) is an oral multi-cyclin dependent kinase (CDK) inhibitor thought to inhibit tumor growth via CDK-9-dependent depletion of survival proteins such as c-MYC and MCL-1 which are frequently overexpressed in glioblastoma. METHODS: EORTC 1608 (NCT03224104) (STEAM) had a three parallel group (A,B,C) phase Ib, open-label, non-randomized, multicenter design in IDH wild-type newly diagnosed glioblastoma or anaplastic astrocytoma. Groups A and B explored the maximum tolerated dose (MTD) of TG02 in elderly patients, in combination with hypofractionated radiotherapy alone (group A) or temozolomide alone (group B), according to O6-methylguanine DNA methyltransferase promoter methylation status determined centrally. Group C explored single agent activity of TG02 at first relapse after temozolomide chemoradiotherapy with a primary endpoint of progression-free survival at 6 months (PFS-6). Tumor expression of CDK-9, c-MYC and MCL-1 was determined by immunohistochemistry. RESULTS: The MTD was 150 mg twice weekly in combination with radiotherapy alone (group A) or temozolomide alone (group B). Two dose-limiting toxicities were observed at 150 mg: one in group A (grade 3 seizure), one in group B (multiple grade 1 events). Main toxicities included neutropenia, gastrointestinal disorders and hepatotoxicity. PFS-6 in group C was 6.7%. CDK-9, c-MYC and MCL-1 were confirmed to be expressed and their expression was moderately cross-correlated. High protein levels of MCL-1 were associated with inferior survival. CONCLUSIONS: TG02 exhibits overlapping toxicity with alkylating agents and low single agent clinical activity in recurrent glioblastoma. The role of CDK-9 and its down-stream effectors as prognostic factors and therapeutic targets in glioblastoma warrants further study.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Compostos Heterocíclicos de 4 ou mais Anéis , Humanos , Idoso , Glioblastoma/tratamento farmacológico , Glioblastoma/radioterapia , Temozolomida/uso terapêutico , Dacarbazina/uso terapêutico , Proteína de Sequência 1 de Leucemia de Células Mieloides/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Recidiva Local de Neoplasia/tratamento farmacológico , Inibidores Enzimáticos , Antineoplásicos Alquilantes/uso terapêutico
7.
Cancer Res ; 84(5): 741-756, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38117484

RESUMO

Tumor adaptation or selection is thought to underlie therapy resistance in glioma. To investigate longitudinal epigenetic evolution of gliomas in response to therapeutic pressure, we performed an epigenomic analysis of 132 matched initial and recurrent tumors from patients with IDH-wildtype (IDHwt) and IDH-mutant (IDHmut) glioma. IDHwt gliomas showed a stable epigenome over time with relatively low levels of global methylation. The epigenome of IDHmut gliomas showed initial high levels of genome-wide DNA methylation that was progressively reduced to levels similar to those of IDHwt tumors. Integration of epigenomics, gene expression, and functional genomics identified HOXD13 as a master regulator of IDHmut astrocytoma evolution. Furthermore, relapse of IDHmut tumors was accompanied by histologic progression that was associated with survival, as validated in an independent cohort. Finally, the initial cell composition of the tumor microenvironment varied between IDHwt and IDHmut tumors and changed differentially following treatment, suggesting increased neoangiogenesis and T-cell infiltration upon treatment of IDHmut gliomas. This study provides one of the largest cohorts of paired longitudinal glioma samples with epigenomic, transcriptomic, and genomic profiling and suggests that treatment of IDHmut glioma is associated with epigenomic evolution toward an IDHwt-like phenotype. SIGNIFICANCE: Standard treatments are related to loss of DNA methylation in IDHmut glioma, resulting in epigenetic activation of genes associated with tumor progression and alterations in the microenvironment that resemble treatment-naïve IDHwt glioma.


Assuntos
Neoplasias Encefálicas , Glioma , Isocitrato Desidrogenase , Humanos , Neoplasias Encefálicas/patologia , Epigênese Genética , Epigenômica , Glioma/patologia , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Mutação , Recidiva Local de Neoplasia/genética , Microambiente Tumoral
8.
J Neurooncol ; 165(2): 329-342, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37976029

RESUMO

PURPOSE: Primary brain tumors are a leading cause of cancer-related death in children, and medulloblastoma is the most common malignant pediatric brain tumor. The current molecular characterization of medulloblastoma is mainly based on protein-coding genes, while little is known about the involvement of long non-coding RNAs (lncRNAs). This study aimed to elucidate the role of the lncRNA OTX2-AS1 in medulloblastoma. METHODS: Analyses of DNA copy number alterations, methylation profiles, and gene expression data were used to characterize molecular alterations of OTX2-AS1 in medulloblastoma tissue samples. In vitro analyses of medulloblastoma cell models and orthotopic in vivo experiments were carried out for functional characterization of OTX2-AS1. High-throughput drug screening was employed to identify pharmacological inhibitors, while proteomics and metabolomics analyses were performed to address potential mechanisms of drug action. RESULTS: We detected amplification and consecutive overexpression of OTX2 and OTX2-AS1 in a subset of medulloblastomas. In addition, OTX2-AS1 promoter methylation was linked to OTX2-AS1 expression. OTX2-AS1 knockout reduced medulloblastoma cell viability and cell migration in vitro and prolonged survival in the D283 orthotopic medulloblastoma mouse xenograft model. Pharmacological inhibition of BCL-2 suppressed the growth of OTX2-AS1 overexpressing medulloblastoma cells in vitro. CONCLUSIONS: Our study revealed a pro-tumorigenic role of OTX2-AS1 in medulloblastoma and identified BCL-2 inhibition as a potential therapeutic approach to target OTX2-AS1 overexpressing medulloblastoma cells.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , RNA Longo não Codificante , Animais , Criança , Humanos , Camundongos , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Regulação Neoplásica da Expressão Gênica , Meduloblastoma/patologia , Fatores de Transcrição Otx/genética , Fatores de Transcrição Otx/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Longo não Codificante/genética
9.
Lancet Oncol ; 24(11): e438-e450, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37922934

RESUMO

Surgical resection represents the standard of care for people with newly diagnosed diffuse gliomas, and the neuropathological and molecular profile of the resected tissue guides clinical management and forms the basis for research. The Response Assessment in Neuro-Oncology (RANO) consortium is an international, multidisciplinary effort that aims to standardise research practice in neuro-oncology. These recommendations represent a multidisciplinary consensus from the four RANO groups: RANO resect, RANO recurrent glioblastoma, RANO radiotherapy, and RANO/PET for a standardised workflow to achieve a representative tumour evaluation in a disease characterised by intratumoural heterogeneity, including recommendations on which tumour regions should be surgically sampled, how to define those regions on the basis of preoperative imaging, and the optimal sample volume. Practical recommendations for tissue sampling are given for people with low-grade and high-grade gliomas, as well as for people with newly diagnosed and recurrent disease. Sampling of liquid biopsies is also addressed. A standardised workflow for subsequent handling of the resected tissue is proposed to avoid information loss due to decreasing tissue quality or insufficient clinical information. The recommendations offer a framework for prospective biobanking studies.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Estudos Prospectivos , Bancos de Espécimes Biológicos , Recidiva Local de Neoplasia/cirurgia , Glioma/diagnóstico por imagem , Glioma/cirurgia
10.
J Neuropathol Exp Neurol ; 82(11): 921-933, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37740942

RESUMO

Gain-of-function mutations in isocitrate dehydrogenase (IDH) genes result in excessive production of (D)-2-hydroxyglutarate (D-2HG) which intrinsically modifies tumor cell epigenetics and impacts surrounding noncancerous cells through nonepigenetic pathways. However, whether D-2HG has a paracrine effect on endothelial cells in the tumor microenvironment needs further clarification. We quantified microvessel density by immunohistochemistry using tissue sections from 60 high-grade astrocytic gliomas with or without IDH mutation. Microvessel density was found to be reduced in tumors carrying an IDH mutation. Ex vivo experiments showed that D-2HG inhibited endothelial cell migration, wound healing, and tube formation by suppressing cell proliferation but not viability, possibly through reduced activation of the mTOR/STAT3 pathway. Further, D-2HG reduced fluorescent dextran permeability and decreased paracellular T-cell transendothelial migration by augmenting expression of junctional proteins thereby collectively increasing endothelial barrier function. These results indicate that D-2HG may influence the tumor vascular microenvironment by reducing the intratumoral vasculature density and by inhibiting the transport of metabolites and extravasation of circulating cells into the astrocytoma microenvironment. These observations provide a rationale for combining IDH inhibition with antitumor immunological/angiogenic approaches and suggest a molecular basis for resistance to antiangiogenic drugs in patients whose tumors express a mutant IDH allele.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioma , Humanos , Glioma/genética , Neoplasias Encefálicas/patologia , Células Endoteliais/metabolismo , Encéfalo/patologia , Astrocitoma/patologia , Mutação/genética , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Proliferação de Células , Microambiente Tumoral
11.
Acta Neuropathol ; 146(4): 551-564, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37656187

RESUMO

Pilocytic astrocytoma (PA), the most common pediatric brain tumor, is driven by aberrant mitogen-activated protein kinase signaling most commonly caused by BRAF gene fusions or activating mutations. While 5-year overall survival rates exceed 95%, tumor recurrence or progression constitutes a major clinical challenge in incompletely resected tumors. Here, we used similarity network fusion (SNF) analysis in an integrative multi-omics approach employing RNA transcriptomic and mass spectrometry-based proteomic profiling to molecularly characterize PA tissue samples from 62 patients. Thereby, we uncovered that PAs segregated into two molecularly distinct groups, namely, Group 1 and Group 2, which were validated in three non-overlapping cohorts. Patients with Group 1 tumors were significantly younger and showed worse progression-free survival compared to patients with group 2 tumors. Ingenuity pathways analysis (IPA) and gene set enrichment analysis (GSEA) revealed that Group 1 tumors were enriched for immune response pathways, such as interferon signaling, while Group 2 tumors showed enrichment for action potential and neurotransmitter signaling pathways. Analysis of immune cell-related gene signatures showed an enrichment of infiltrating T Cells in Group 1 versus Group 2 tumors. Taken together, integrative multi-omics of PA identified biologically distinct and prognostically relevant tumor groups that may improve risk stratification of this single pathway driven tumor type.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Criança , Humanos , Multiômica , Proteômica , Astrocitoma/genética , Neoplasias Encefálicas/genética , Potenciais de Ação
13.
J Neurooncol ; 164(2): 353-366, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37648934

RESUMO

PURPOSE: Multimodal therapies have significantly improved prognosis in glioma. However, in particular radiotherapy may induce long-term neurotoxicity compromising patients' neurocognition and quality of life. The present prospective multicenter study aimed to evaluate associations of multimodal treatment with neurocognition with a particular focus on hippocampal irradiation. METHODS: Seventy-one glioma patients (WHO grade 1-4) were serially evaluated with neurocognitive testing and quality of life questionnaires. Prior to (baseline) and following further treatment (median 7.1 years [range 4.6-11.0] after baseline) a standardized computerized neurocognitive test battery (NeuroCog FX) was applied to gauge psychomotor speed and inhibition, verbal short-term memory, working memory, verbal and non-verbal memory as well as verbal fluency. Mean ipsilateral hippocampal radiation dose was determined in a subgroup of 27 patients who received radiotherapy according to radiotherapy plans to evaluate its association with neurocognition. RESULTS: Between baseline and follow-up mean performance in none of the cognitive domains significantly declined in any treatment modality (radiotherapy, chemotherapy, combined radio-chemotherapy, watchful-waiting), except for selective attention in patients receiving chemotherapy alone. Apart from one subtest (inhibition), mean ipsilateral hippocampal radiation dose > 50 Gy (Dmean) as compared to < 10 Gy showed no associations with long-term cognitive functioning. However, patients with Dmean < 10 Gy showed stable or improved performance in all cognitive domains, while patients with > 50 Gy numerically deteriorated in 4/8 domains. CONCLUSIONS: Multimodal glioma therapy seems to affect neurocognition less than generally assumed. Even patients with unilateral hippocampal irradiation with > 50 Gy showed no profound cognitive decline in this series.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Adulto , Seguimentos , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/radioterapia , Qualidade de Vida , Estudos Prospectivos , Glioma/complicações , Glioma/radioterapia , Terapia Combinada
14.
Neuro Oncol ; 25(10): 1731-1749, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37279174

RESUMO

In the 5th edition of the WHO CNS tumor classification (CNS5, 2021), multiple molecular characteristics became essential diagnostic criteria for many additional CNS tumor types. For those tumors, an integrated, "histomolecular" diagnosis is required. A variety of approaches exists for determining the status of the underlying molecular markers. The present guideline focuses on the methods that can be used for assessment of the currently most informative diagnostic and prognostic molecular markers for the diagnosis of gliomas, glioneuronal and neuronal tumors. The main characteristics of the molecular methods are systematically discussed, followed by recommendations and information on available evidence levels for diagnostic measures. The recommendations cover DNA and RNA next-generation-sequencing, methylome profiling, and select assays for single/limited target analyses, including immunohistochemistry. Additionally, because of its importance as a predictive marker in IDH-wildtype glioblastomas, tools for the analysis of MGMT promoter methylation status are covered. A structured overview of the different assays with their characteristics, especially their advantages and limitations, is provided, and requirements for input material and reporting of results are clarified. General aspects of molecular diagnostic testing regarding clinical relevance, accessibility, cost, implementation, regulatory, and ethical aspects are discussed as well. Finally, we provide an outlook on new developments in the landscape of molecular testing technologies in neuro-oncology.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Patologia Molecular , Mutação , Glioma/diagnóstico , Glioma/genética , Glioma/patologia , Organização Mundial da Saúde
15.
Eur J Cancer ; 189: 112913, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37277265

RESUMO

BACKGROUND: Median survival with glioblastoma remains in the range of 12 months on population levels. Only few patients survive for more than 5 years. Patient and disease features associated with long-term survival remain poorly defined. METHODS: European Organization for Research and Treatment of Cancer (EORTC) 1419 (ETERNITY) is a registry study supported by the Brain Tumor Funders Collaborative in the US and the EORTC Brain Tumor Group. Patients with glioblastoma surviving at least 5 years from diagnosis were identified at 24 sites in Europe, US, and Australia. In patients with isocitrate dehydrogenase (IDH) wildtype tumours, prognostic factors were analysed using the Kaplan-Meier method and the Cox proportional hazards model. A population-based reference cohort was obtained from the Cantonal cancer registry Zurich. RESULTS: At the database lock of July 2020, 280 patients with histologically centrally confirmed glioblastoma (189 IDH wildtype, 80 IDH mutant, 11 incompletely characterised) had been registered. In the IDH wildtype population, median age was 56 years (range 24-78 years), 96 patients (50.8%) were female, 139 patients (74.3%) had tumours with O6-methylguanine DNA methyltransferase (MGMT) promoter methylation. Median overall survival was 9.9 years (95% confidence interval [95% CI] 7.9-11.9). Patients without recurrence experienced longer median survival (not reached) than patients with one or more recurrences (8.92 years) (p < 0.001) and had a high rate (48.8%) of MGMT promoter-unmethylated tumours. CONCLUSIONS: Freedom from progression is a powerful predictor of overall survival in long-term survivors with glioblastoma. Patients without relapse often have MGMT promoter-unmethylated glioblastoma and may represent a distinct subtype of glioblastoma.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Feminino , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Masculino , Glioblastoma/genética , Glioblastoma/terapia , Glioblastoma/patologia , Isocitrato Desidrogenase/genética , Metilação de DNA , Recidiva Local de Neoplasia/genética , Prognóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/diagnóstico , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Estudos Retrospectivos
16.
Clin Neuropathol ; 42(3): 112-121, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36999511

RESUMO

We previously reported on the first neuropathological round robin trials operated together with Quality in Pathology (QuIP) GmbH in 2018 and 2019 in Germany, i.e., the trials on IDH mutational testing and MGMT promoter methylation analysis [1]. For 2020 and 2021, the spectrum of round robin trials has been expanded to cover the most commonly used assays in neuropathological institutions. In addition to IDH mutation and MGMT promoter methylation testing, there is a long tradition for 1p/19q codeletion testing relevant in the context of the diagnosis of oligodendroglioma. With the 5th edition of the World Health Organization (WHO) classification of the central nervous system tumors, additional molecular markers came into focus: TERT promoter mutation is often assessed as a molecular diagnostic criterion for IDH-wildtype glioblastoma. Moreover, several molecular diagnostic markers have been introduced for pediatric brain tumors. Here, trials on KIAA1549::BRAF fusions (common in pilocytic astrocytomas) and H3-3A mutations (in diffuse midline gliomas, H3-K27-altered and diffuse hemispheric gliomas, H3-G34-mutant) were most desired by the neuropathological community. In this update, we report on these novel round robin trials. In summary, success rates in all four trials ranged from 75 to 96%, arguing for an overall high quality level in the field of molecular neuropathological diagnostics.


Assuntos
Biomarcadores Tumorais , Deleção Cromossômica , Testes Genéticos , Histonas , Mutação , Proteínas de Fusão Oncogênica , Regiões Promotoras Genéticas , Telomerase , Criança , Humanos , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Alemanha , Histonas/genética , Proteínas de Membrana/genética , Oligodendroglioma/diagnóstico , Oligodendroglioma/genética , Proteínas de Fusão Oncogênica/genética , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas B-raf/genética , Telomerase/genética
17.
Neuro Oncol ; 25(5): 813-826, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36632791

RESUMO

The mainstay of treatment for adult patients with gliomas, glioneuronal and neuronal tumors consists of combinations of surgery, radiotherapy, and chemotherapy. For many systemic cancers, targeted treatments are a part of the standard of care, however, the predictive significance of most of these targets in central nervous system (CNS) tumors remains less well-studied. Despite that, there is increasing use of advanced molecular diagnostics that identify potential targets, and tumor-agnostic regulatory approvals on targets also present in CNS tumors have been granted. This raises the question of when and for which targets it is meaningful to test in adult patients with CNS tumors. This evidence-based guideline reviews the evidence available for targeted treatment for alterations in the RAS/MAPK pathway (BRAF, NF1), in growth factor receptors (EGFR, ALK, fibroblast growth factor receptor (FGFR), neurotrophic tyrosine receptor kinase (NTRK), platelet-derived growth factor receptor alpha, and ROS1), in cell cycle signaling (CDK4/6, MDM2/4, and TSC1/2) and altered genomic stability (mismatch repair, POLE, high tumor mutational burden (TMB), homologous recombination deficiency) in adult patients with gliomas, glioneuronal and neuronal tumors. At present, targeted treatment for BRAF p.V600E alterations is to be considered part of the standard of care for patients with recurrent gliomas, pending regulatory approval. For approved tumor agnostic treatments for NTRK fusions and high TMB, the evidence for efficacy in adult patients with CNS tumors is very limited, and treatment should preferably be given within prospective clinical registries and trials. For targeted treatment of CNS tumors with FGFR fusions or mutations, clinical trials are ongoing to confirm modest activity so far observed in basket trials. For all other reviewed targets, evidence of benefit in CNS tumors is currently lacking, and testing/treatment should be in the context of available clinical trials.


Assuntos
Glioma , Proteínas Tirosina Quinases , Humanos , Adulto , Proteínas Proto-Oncogênicas B-raf/genética , Estudos Prospectivos , Biomarcadores Tumorais/genética , Proteínas Proto-Oncogênicas , Glioma/diagnóstico , Glioma/genética , Glioma/terapia , Receptores Proteína Tirosina Quinases , Terapia de Alvo Molecular
18.
J Immunother Cancer ; 11(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36639156

RESUMO

BACKGROUND: While major advances have been made in improving the quality of life and survival of children with most forms of medulloblastoma (MB), those with MYC-driven tumors (Grp3-MB) still suffer significant morbidity and mortality. There is an urgent need to explore multimodal therapeutic regimens which are effective and safe for children. Large-scale studies have revealed abnormal cancer epigenomes caused by mutations and structural alterations of chromatin modifiers, aberrant DNA methylation, and histone modification signatures. Therefore, targeting epigenetic modifiers for cancer treatment has gained increasing interest, and inhibitors for various epigenetic modulators have been intensively studied in clinical trials. Here, we report a cross-entity, epigenetic drug screen to evaluate therapeutic vulnerabilities in MYC amplified MB, which sensitizes them to macrophage-mediated phagocytosis by targeting the CD47-signal regulatory protein α (SIRPα) innate checkpoint pathway. METHODS: We performed a primary screen including 78 epigenetic inhibitors and a secondary screen including 20 histone deacetylase inhibitors (HDACi) to compare response profiles in atypical teratoid/rhabdoid tumor (AT/RT, n=11), MB (n=14), and glioblastoma (n=14). This unbiased approach revealed the preferential activity of HDACi in MYC-driven MB. Importantly, the class I selective HDACi, CI-994, showed significant cell viability reduction mediated by induction of apoptosis in MYC-driven MB, with little-to-no activity in non-MYC-driven MB, AT/RT, and glioblastoma in vitro. We tested the combinatorial effect of targeting class I HDACs and the CD47-SIRPa phagocytosis checkpoint pathway using in vitro phagocytosis assays and in vivo orthotopic xenograft models. RESULTS: CI-994 displayed antitumoral effects at the primary site and the metastatic compartment in two orthotopic mouse models of MYC-driven MB. Furthermore, RNA sequencing revealed nuclear factor-kB (NF-κB) pathway induction as a response to CI-994 treatment, followed by transglutaminase 2 (TGM2) expression, which enhanced inflammatory cytokine secretion. We further show interferon-γ release and cell surface expression of engulfment ('eat-me') signals (such as calreticulin). Finally, combining CI-994 treatment with an anti-CD47 mAb targeting the CD47-SIRPα phagocytosis checkpoint enhanced in vitro phagocytosis and survival in tumor-bearing mice. CONCLUSION: Together, these findings suggest a dynamic relationship between MYC amplification and innate immune suppression in MYC amplified MB and support further investigation of phagocytosis modulation as a strategy to enhance cancer immunotherapy responses.


Assuntos
Neoplasias Cerebelares , Glioblastoma , Meduloblastoma , Humanos , Camundongos , Animais , Meduloblastoma/tratamento farmacológico , NF-kappa B/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Proteína 2 Glutamina gama-Glutamiltransferase , Qualidade de Vida , Fagocitose , Macrófagos , Inflamação/metabolismo
19.
Clin Cancer Res ; 29(2): 488-500, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36239995

RESUMO

PURPOSE: Therapy resistance and fatal disease progression in glioblastoma are thought to result from the dynamics of intra-tumor heterogeneity. This study aimed at identifying and molecularly targeting tumor cells that can survive, adapt, and subclonally expand under primary therapy. EXPERIMENTAL DESIGN: To identify candidate markers and to experimentally access dynamics of subclonal progression in glioblastoma, we established a discovery cohort of paired vital cell samples obtained before and after primary therapy. We further used two independent validation cohorts of paired clinical tissues to test our findings. Follow-up preclinical treatment strategies were evaluated in patient-derived xenografts. RESULTS: We describe, in clinical samples, an archetype of rare ALDH1A1+ tumor cells that enrich and acquire AKT-mediated drug resistance in response to standard-of-care temozolomide (TMZ). Importantly, we observe that drug resistance of ALDH1A1+ cells is not intrinsic, but rather an adaptive mechanism emerging exclusively after TMZ treatment. In patient cells and xenograft models of disease, we recapitulate the enrichment of ALDH1A1+ cells under the influence of TMZ. We demonstrate that their subclonal progression is AKT-driven and can be interfered with by well-timed sequential rather than simultaneous antitumor combination strategy. CONCLUSIONS: Drug-resistant ALDH1A1+/pAKT+ subclones accumulate in patient tissues upon adaptation to TMZ therapy. These subclones may therefore represent a dynamic target in glioblastoma. Our study proposes the combination of TMZ and AKT inhibitors in a sequential treatment schedule as a rationale for future clinical investigation.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Proteínas Proto-Oncogênicas c-akt , Resistencia a Medicamentos Antineoplásicos/genética , Temozolomida , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico
20.
Neuro Oncol ; 25(2): 290-302, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35802605

RESUMO

BACKGROUND: Recent efforts have described the evolution of glioblastoma from initial diagnosis to post-treatment recurrence on a genomic and transcriptomic level. However, the evolution of the proteomic landscape is largely unknown. METHODS: Sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS) was used to characterize the quantitative proteomes of two independent cohorts of paired newly diagnosed and recurrent glioblastomas. Recurrence-associated proteins were validated using immunohistochemistry and further studied in human glioma cell lines, orthotopic xenograft models, and human organotypic brain slice cultures. External spatial transcriptomic, single-cell, and bulk RNA sequencing data were analyzed to gain mechanistic insights. RESULTS: Although overall proteomic changes were heterogeneous across patients, we identified BCAS1, INF2, and FBXO2 as consistently upregulated proteins at recurrence and validated these using immunohistochemistry. Knockout of FBXO2 in human glioma cells conferred a strong survival benefit in orthotopic xenograft mouse models and reduced invasive growth in organotypic brain slice cultures. In glioblastoma patient samples, FBXO2 expression was enriched in the tumor infiltration zone and FBXO2-positive cancer cells were associated with synaptic signaling processes. CONCLUSIONS: These findings demonstrate a potential role of FBXO2-dependent glioma-microenvironment interactions to promote tumor growth. Furthermore, the published datasets provide a valuable resource for further studies.


Assuntos
Neoplasias Encefálicas , Proteínas F-Box , Glioblastoma , Glioma , Humanos , Animais , Camundongos , Glioblastoma/patologia , Proteômica , Camundongos Knockout , Glioma/patologia , Encéfalo/patologia , Neoplasias Encefálicas/patologia , Proteínas , Microambiente Tumoral , Proteínas de Neoplasias , Proteínas do Tecido Nervoso , Proteínas de Ciclo Celular , Proteínas F-Box/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA