Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Neurosci Methods ; 384: 109762, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36470470

RESUMO

BACKGROUND: Constituting about 5 % of mouse retinal ganglion cells (RGCs), intrinsically photosensitive retinal ganglion cells (ipRGCs) express the photopigment melanopsin (gene symbol Opn4) and drive such photoresponses as pupil constriction, melatonin suppression, and circadian photoentrainment. Opn4Cre mice with Cre recombinase-expressing ipRGCs have enabled genetic manipulation of ipRGCs; unfortunately, while Cre expression within the inner retina is ipRGC-specific, leaky expression also occurs in some outer retinal photoreceptors, so Cre-induced alterations in the latter cells may confound certain studies of ipRGC function. Methods that express Cre in ipRGCs but not rods or cones are needed. NEW METHOD: We have constructed a recombinant serotype-2 adeno-associated virus, rAAV2-Opn4-Cre, with the improved Cre recombinase (iCre) gene under the control of a ∼3kbp Opn4 promoter sequence, and injected it intravitreally into mice to transduce inner retinal neurons while sparing the outer retina. RESULTS: We introduced rAAV2-Opn4-Cre into Cre reporter mice in which enhanced green fluorescent protein (EGFP) expression indicates Cre expression. Single-cell electrophysiological recordings and intracellular dye fills showed that 84 % of the EGFP+ cells were ipRGCs including M1-M6 types, while 16 % were conventional RGCs. COMPARISON WITH EXISTING METHODS: Whereas Opn4Cre mice express Cre in some rod/cone photoreceptors, intravitreally applied rAAV2-Opn4-Cre induces Cre only in the inner retina, albeit with leaky expression in some conventional RGCs. CONCLUSIONS: rAAV2-Opn4-Cre has overcome a significant limitation of Opn4Cre mice. We recommend usage scenarios where the Cre-expressing conventional RGCs should not pose a problem.


Assuntos
Dependovirus , Células Fotorreceptoras Retinianas Cones , Camundongos , Animais , Dependovirus/genética , Células Fotorreceptoras de Vertebrados , Luz
2.
Invest Ophthalmol Vis Sci ; 62(1): 10, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33410914

RESUMO

Purpose: Intrinsically photosensitive retinal ganglion cells (ipRGCs) signal not only centrally to non-image-forming visual centers of the brain but also intraretinally to amacrine interneurons through gap junction electrical coupling, potentially modulating image-forming retinal processing. We aimed to determine (1) which ipRGC types couple with amacrine cells, (2) the neuromodulator contents of ipRGC-coupled amacrine cells, and (3) whether connexin36 (Cx36) contributes to ipRGC-amacrine coupling. Methods: Gap junction-permeable Neurobiotin tracer was injected into green fluorescent protein (GFP)-labeled ipRGCs in Opn4Cre/+; Z/EG mice to stain coupled amacrine cells, and immunohistochemistry was performed to reveal the neuromodulator contents of the Neurobiotin-stained amacrine cells. We also created Opn4Cre/+; Cx36flox/flox; Z/EG mice to knock out Cx36 in GFP-labeled ipRGCs and looked for changes in the number of ipRGC-coupled amacrine cells. Results: Seventy-three percent of ipRGCs, including all six types (M1-M6), were tracer-coupled with amacrine somas 5.7 to 16.5 µm in diameter but not with ganglion cells. Ninety-two percent of the ipRGC-coupled somas were in the ganglion cell layer and the rest in the inner nuclear layer. Some ipRGC-coupled amacrine cells were found to accumulate serotonin or to contain nitric oxide synthase or neuropeptide Y. Knocking out Cx36 in M2 and M4 dramatically reduced the number of coupled somas. Conclusions: Heterologous gap junction coupling with amacrine cells is widespread across mouse ipRGC types. ipRGC-coupled amacrine cells probably comprise multiple morphologic types and use multiple neuromodulators, suggesting that gap junctional ipRGC-to-amacrine signaling likely exerts diverse modulatory effects on retinal physiology. ipRGC-amacrine coupling is mediated partly, but not solely, by Cx36.


Assuntos
Células Amácrinas/citologia , Conexinas/metabolismo , Junções Comunicantes/fisiologia , Neuropeptídeo Y/metabolismo , Óxido Nítrico Sintase/metabolismo , Células Ganglionares da Retina/citologia , Serotonina/metabolismo , Células Amácrinas/metabolismo , Animais , Biotina/administração & dosagem , Biotina/análogos & derivados , Comunicação Celular/fisiologia , Feminino , Proteínas de Fluorescência Verde/administração & dosagem , Substâncias Luminescentes/administração & dosagem , Masculino , Camundongos , Camundongos Knockout , Isoformas de Proteínas , Células Ganglionares da Retina/metabolismo , Opsinas de Bastonetes , Proteína delta-2 de Junções Comunicantes
3.
Curr Eye Res ; 46(4): 515-523, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32841098

RESUMO

PURPOSE: Intrinsically photosensitive retinal ganglion cells (ipRGCs) contain the photopigment melanopsin and can signal light continuously for many hours. Melanopsin is excited when its chromophore 11-cis-retinal absorbs a photon and becomes all-trans-retinal, which must be reisomerized to 11-cis-retinal to regenerate photoexcitable melanopsin. Due to the great distance separating ipRGCs from the retinal pigment epithelium (RPE) whose retinoid cycle produces 11-cis-retinal, ipRGCs had been assumed to regenerate all melanopsin molecules autonomously. Surprisingly, we previously found that pharmacologically inhibiting the retinoid cycle rendered melanopsin-based responses to prolonged illumination less sustained, suggesting that the RPE may supply retinoids to help ipRGCs regenerate melanopsin during extended photostimulation. However, the specificity of those drugs is unclear. Here, we reexamined the role of the retinoid cycle, and tested whether the RPE-to-ipRGC transport of retinoids utilizes cellular retinaldehyde-binding protein (CRALBP), present throughout the RPE and Müller glia. METHODS: To measure melanopsin-mediated photoresponses in isolation, all animals were 8- to 12-month-old rod/cone-degenerate mice. We genetically knocked out RPE-specific 65 kDa protein (RPE65), a critical enzyme in the retinoid cycle. We also knocked out the CRALBP gene rlbp1 mainly in Foxg1-expressing Müller cells. We obtained multielectrode-array recordings from ipRGCs in a novel RPE-attached mouse retina preparation, and imaged pupillary light reflexes in vivo. RESULTS: Melanopsin-based ipRGC responses to prolonged light became less tonic in both knockout lines, and pupillary light reflexes were also less sustained in RPE65-knockout than control mice. CONCLUSIONS: These results confirm that ipRGCs rely partly on the retinoid cycle to continuously regenerate melanopsin during prolonged photostimulation, and suggest that CRALBP in Müller glia likely transports 11-cis-retinal from the RPE to ipRGCs - this is the first proposed functional role for CRALBP in the inner retina.


Assuntos
Proteínas de Transporte/metabolismo , Reflexo Pupilar/fisiologia , Células Ganglionares da Retina/metabolismo , Opsinas de Bastonetes/fisiologia , cis-trans-Isomerases/metabolismo , Animais , Inativação Gênica , Imuno-Histoquímica , Luz , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Estimulação Luminosa
4.
J Gen Physiol ; 149(3): 335-353, 2017 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-28153865

RESUMO

Retinal neurons use sustained and transient light responses to encode visual stimuli of different frequency ranges, but the underlying mechanisms remain poorly understood. In particular, although earlier studies in retinal ganglion cells (RGCs) proposed seven potential mechanisms, all seven have since been disputed, and it remains unknown whether different RGC types use different mechanisms or how many mechanisms are used by each type. Here, we conduct a comprehensive survey in mice and rats of 12 candidate mechanisms that could conceivably produce tonic rod/cone-driven ON responses in intrinsically photosensitive RGCs (ipRGCs) and transient ON responses in three types of direction-selective RGCs (TRHR+, Hoxd10+ ON, and Hoxd10+ ON-OFF cells). We find that the tonic kinetics of ipRGCs arises from their substantially above-threshold resting potentials, input from sustained ON bipolar cells, absence of amacrine cell inhibition of presynaptic ON bipolar cells, and mGluR7-mediated maintenance of light-evoked glutamatergic input. All three types of direction-selective RGCs receive input from transient ON bipolar cells, and each type uses additional strategies to promote photoresponse transience: presynaptic inhibition and dopaminergic modulation for TRHR+ cells, center/surround antagonism and relatively negative resting potentials for Hoxd10+ ON cells, and presynaptic inhibition for Hoxd10+ ON-OFF cells. We find that the sustained nature of ipRGCs' rod/cone-driven responses depends neither on melanopsin nor on N-methyl-d-aspartate (NMDA) receptors, whereas the transience of the direction-selective cells' responses is influenced neither by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptor desensitization nor by glutamate uptake. For all cells, we further rule out spike frequency adaptation and intracellular Ca2+ as determinants of photoresponse kinetics. In conclusion, different RGC types use diverse mechanisms to produce sustained or transient light responses. Parenthetically, we find evidence in both mice and rats that the kinetics of light-induced mGluR6 deactivation determines whether an ON bipolar cell responds tonically or transiently to light.


Assuntos
Potenciais da Membrana/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Células Ganglionares da Retina/fisiologia , Animais , Cálcio/metabolismo , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Knockout , Ratos , Ratos Sprague-Dawley , Células Ganglionares da Retina/efeitos dos fármacos , Opsinas de Bastonetes/genética , Opsinas de Bastonetes/metabolismo
5.
Curr Biol ; 25(21): 2763-2773, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26441349

RESUMO

Retinal neurons exhibit sustained versus transient light responses, which are thought to encode low- and high-frequency stimuli, respectively. This dichotomy has been recognized since the earliest intracellular recordings from the 1960s, but the underlying mechanisms are not yet fully understood. We report that in the ganglion cell layer of rat retinas, all spiking amacrine interneurons with sustained ON photoresponses receive gap-junction input from intrinsically photosensitive retinal ganglion cells (ipRGCs), recently discovered photoreceptors that specialize in prolonged irradiance detection. This input presumably allows ipRGCs to regulate the secretion of neuromodulators from these interneurons. We have identified three morphological varieties of such ipRGC-driven displaced amacrine cells: (1) monostratified cells with dendrites terminating exclusively in sublamina S5 of the inner plexiform layer, (2) bistratified cells with dendrites in both S1 and S5, and (3) polyaxonal cells with dendrites and axons stratifying in S5. Most of these amacrine cells are wide field, although some are medium field. The three classes respond to light differently, suggesting that they probably perform diverse functions. These results demonstrate that ipRGCs are a major source of tonic visual information within the retina and exert widespread intraretinal influence. They also add to recent evidence that ganglion cells signal not only to the brain.


Assuntos
Células Amácrinas/metabolismo , Junções Comunicantes/metabolismo , Células Ganglionares da Retina/metabolismo , Animais , Axônios/metabolismo , Dendritos/metabolismo , Interneurônios/metabolismo , Transdução de Sinal Luminoso , Estimulação Luminosa , Células Fotorreceptoras de Vertebrados/metabolismo , Ratos , Ratos Sprague-Dawley , Retina/metabolismo , Opsinas de Bastonetes/metabolismo , Vias Visuais
6.
J Neurophysiol ; 114(5): 2955-66, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26400257

RESUMO

Intrinsically photosensitive retinal ganglion cells (ipRGCs) mediate both image-forming vision and non-image-forming visual responses such as pupillary constriction and circadian photoentrainment. Five types of ipRGCs, named M1-M5, have been discovered in rodents. To further investigate their photoresponse properties, we made multielectrode array spike recordings from rat ipRGCs, classified them into M1, M2/M4, and M3/M5 clusters, and measured their intrinsic, melanopsin-based responses to single and flickering light pulses. Results showed that ipRGC spiking can track flickers up to ∼0.2 Hz in frequency and that flicker intervals between 5 and 14 s evoke the most spikes. We also learned that melanopsin's integration time is intensity and cluster dependent. Using these data, we constructed a mathematical model for each cluster's intrinsic photoresponse. We found that the data for the M1 cluster are best fit by a model that assumes a large photoresponse, causing the cell to enter depolarization block. Our models also led us to hypothesize that the M2/M4 and M3/M5 clusters experience comparable photoexcitation but that the M3/M5 cascade decays significantly faster than the M2/M4 cascade, resulting in different response waveforms between these clusters. These mathematical models will help predict how each ipRGC cluster might respond to stimuli of any waveform and could inform the invention of lighting technologies that promote health through melanopsin stimulation.


Assuntos
Transdução de Sinal Luminoso , Modelos Neurológicos , Células Fotorreceptoras de Vertebrados/fisiologia , Células Ganglionares da Retina/fisiologia , Potenciais de Ação , Animais , Estimulação Luminosa , Ratos
7.
Stem Cells Dev ; 24(23): 2778-95, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26283078

RESUMO

Stem cell-based therapy of retinal degenerative conditions is a promising modality to treat blindness, but requires new strategies to improve the number of functionally integrating cells. Grafting semidifferentiated retinal tissue rather than progenitors allows preservation of tissue structure and connectivity in retinal grafts, mandatory for vision restoration. Using human embryonic stem cells (hESCs), we derived retinal tissue growing in adherent conditions consisting of conjoined neural retina and retinal pigment epithelial (RPE) cells and evaluated cell fate determination and maturation in this tissue. We found that deriving such tissue in adherent conditions robustly induces all eye field genes (RX, PAX6, LHX2, SIX3, SIX6) and produces four layers of pure populations of retinal cells: RPE (expressing NHERF1, EZRIN, RPE65, DCT, TYR, TYRP, MITF, PMEL), early photoreceptors (PRs) (coexpressing CRX and RCVRN), inner nuclear layer neurons (expressing CALB2), and retinal ganglion cells [RGCs, expressing BRN3B and Neurofilament (NF) 200]. Furthermore, we found that retinal progenitors divide at the apical side of the hESC-derived retinal tissue (next to the RPE layer) and then migrate toward the basal side, similar to that found during embryonic retinogenesis. We detected synaptogenesis in hESC-derived retinal tissue, and found neurons containing many synaptophysin-positive boutons within the RGC and PR layers. We also observed long NF200-positive axons projected by RGCs toward the apical side. Whole-cell recordings demonstrated that putative amacrine and/or ganglion cells exhibited electrophysiological responses reminiscent of those in normal retinal neurons. These responses included voltage-gated Na(+) and K(+) currents, depolarization-induced spiking, and responses to neurotransmitter receptor agonists. Differentiation in adherent conditions allows generation of long and flexible pieces of 3D retinal tissue suitable for isolating transplantable slices of tissue for retinal replacement therapies.


Assuntos
Células-Tronco Embrionárias/citologia , Neurônios Retinianos/citologia , Epitélio Pigmentado da Retina/citologia , Engenharia Tecidual , Potenciais de Ação , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Humanos , Neurogênese , Potássio/metabolismo , Neurônios Retinianos/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Sódio/metabolismo , Sinapses/metabolismo , Sinapses/fisiologia , Sinaptofisina/genética , Sinaptofisina/metabolismo
8.
Exp Eye Res ; 130: 17-28, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25450063

RESUMO

Intrinsically photosensitive retinal ganglion cells (ipRGCs) are inner retinal photoreceptors that mediate non-image-forming visual functions, e.g. pupillary constriction, regulation of pineal melatonin release, and circadian photoentrainment. Five types of ipRGCs were recently discovered in mouse, but whether they exist in other mammals remained unknown. We report that the rat also has five types of ipRGCs, whose morphologies match those of mouse ipRGCs; this is the first demonstration of all five cell types in a non-mouse species. Through immunostaining and λmax measurements, we showed that melanopsin is likely the photopigment of all rat ipRGCs. The various cell types exhibited diverse spontaneous spike rates, with the M1 type spiking the least and M4 spiking the most, just like we had observed for their mouse counterparts. Also similar to mouse, all ipRGCs in rat generated not only sluggish intrinsic photoresponses but also fast, synaptically driven ones. However, we noticed two significant differences between these species. First, whereas we learned previously that all mouse ipRGCs had equally sustained synaptic light responses, rat M1 cells' synaptic photoresponses were far more transient than those of M2-M5. Since M1 cells provide all input to the circadian clock, this rat-versus-mouse discrepancy could explain the difference in photoentrainment threshold between mouse and other species. Second, rat ipRGCs' melanopsin-based spiking photoresponses could be classified into three varieties, but only two were discerned for mouse ipRGCs. This correlation of spiking photoresponses with cell types will help researchers classify ipRGCs in multielectrode-array (MEA) spike recordings.


Assuntos
Células Ganglionares da Retina/citologia , Animais , Animais Recém-Nascidos , Axônios/fisiologia , Ritmo Circadiano/fisiologia , Eletrofisiologia , Luz , Potenciais da Membrana/fisiologia , Camundongos , Estimulação Luminosa , Ratos , Ratos Sprague-Dawley , Reflexo Pupilar/fisiologia , Células Ganglionares da Retina/fisiologia , Células Ganglionares da Retina/efeitos da radiação , Opsinas de Bastonetes/metabolismo , Visão Ocular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA