Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(10)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38786100

RESUMO

Current treatment strategies for multiple myeloma (MM) are highly effective, but most patients develop relapsed/refractory disease (RRMM). The anti-CD38/CD3xCD28 trispecific antibody SAR442257 targets CD38 and CD28 on MM cells and co-stimulates CD3 and CD28 on T cells (TCs). We evaluated different key aspects such as MM cells and T cells avidity interaction, tumor killing, and biomarkers for drug potency in three distinct cohorts of RRMM patients. We found that a significantly higher proportion of RRMM patients (86%) exhibited aberrant co-expression of CD28 compared to newly diagnosed MM (NDMM) patients (19%). Furthermore, SAR442257 mediated significantly higher TC activation, resulting in enhanced MM killing compared to bispecific functional knockout controls for all relapse cohorts (Pearson's r = 0.7). Finally, patients refractory to anti-CD38 therapy had higher levels of TGF-ß (up to 20-fold) compared to other cohorts. This can limit the activity of SAR442257. Vactoserib, a TGF-ß inhibitor, was able to mitigate this effect and restore sensitivity to SAR442257 in these experiments. In conclusion, SAR442257 has high potential for enhancing TC cytotoxicity by co-targeting CD38 and CD28 on MM and CD3/CD28 on T cells.


Assuntos
ADP-Ribosil Ciclase 1 , Mieloma Múltiplo , Linfócitos T , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Mieloma Múltiplo/imunologia , ADP-Ribosil Ciclase 1/metabolismo , ADP-Ribosil Ciclase 1/antagonistas & inibidores , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/efeitos dos fármacos , Complexo CD3/metabolismo , Antígenos CD28/metabolismo , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Linhagem Celular Tumoral , Recidiva
2.
Biol Chem ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38666334

RESUMO

T-cell therapy has emerged as an effective approach for treating viral infections and cancers. However, a significant challenge is the selection of T-cell receptors (TCRs) that exhibit the desired functionality. Conventionally in vitro techniques, such as peptide sensitivity measurements and cytotoxicity assays, provide valuable insights into TCR potency but are labor-intensive. In contrast, measuring ligand binding properties (z-Movi technology) could provide an accelerated processing while showing robust correlations with T-cell functions. In this study, we assessed whether cell avidity can predict functionality also in the context of TCR-engineered T cells. To this end, we developed a flexible system for TCR re-expression by generating a Jurkat-derived T cell clone lacking TCR and CD3 expression through CRISPR-Cas9-mediated TRBC knockout. The knockin of a transgenic TCR into the TRAC locus restored TCR/CD3 expression, allowing for CD3-based purification of TCR-engineered T cells. Subsequently, we characterized these engineered cell lines by functional readouts, and assessment of binding properties through the z-Movi technology. Our findings revealed a strong correlation between the cell avidities and functional sensitivities of Jurkat TCR-T cells. Altogether, by integrating cell avidity measurements with our versatile T cell engineering platform, we established an accelerated system for enhancing the in vitro selection of clinically relevant TCRs.

3.
Int J Mol Sci ; 24(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38138970

RESUMO

Since the successful introduction of checkpoint inhibitors targeting the adaptive immune system, monoclonal antibodies inhibiting CD47-SIRPα interaction have shown promise in enhancing anti-tumor treatment efficacy. Apart from SIRPα, neutrophils express a broad repertoire of inhibitory receptors, including several members of the sialic acid-binding receptor (SIGLEC) family. Here, we demonstrate that interaction between tumor cell-expressed sialic acids and SIGLEC-5/14 on neutrophils inhibits antibody-dependent cellular cytotoxicity (ADCC). We observed that conjugate formation and trogocytosis, both essential processes for neutrophil ADCC, were limited by the sialic acid-SIGLEC-5/14 interaction. During neutrophil-tumor cell conjugate formation, we found that inhibition of the interaction between tumor-expressed sialic acids and SIGLEC-5/14 on neutrophils increased the CD11b/CD18 high affinity conformation. By dynamic acoustic force measurement, the binding between tumor cells and neutrophils was assessed. The interaction between SIGLEC-5/14 and the sialic acids was shown to inhibit the CD11b/CD18-regulated binding between neutrophils and antibody-opsonized tumor cells. Moreover, the interaction between sialic acids and SIGLEC-5/14-consequently hindered trogocytosis and tumor cell killing. In summary, our results provide evidence that the sialic acid-SIGLEC-5/14 interaction is an additional target for innate checkpoint blockade in the tumor microenvironment.


Assuntos
Neoplasias , Neutrófilos , Humanos , Neutrófilos/metabolismo , Ácido N-Acetilneuramínico , Antígeno de Macrófago 1 , Neoplasias/tratamento farmacológico , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Microambiente Tumoral
4.
J Immunother Cancer ; 11(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37399355

RESUMO

BACKGROUND: We used a proliferating ligand (APRIL) to construct a ligand-based third generation chimeric antigen receptor (CAR) able to target two myeloma antigens, B-cell maturation antigen (BCMA) and transmembrane activator and CAML interactor. METHODS: The APRIL CAR was evaluated in a Phase 1 clinical trial (NCT03287804, AUTO2) in patients with relapsed, refractory multiple myeloma. Eleven patients received 13 doses, the first 15×106 CARs, and subsequent patients received 75,225,600 and 900×106 CARs in a 3+3 escalation design. RESULTS: The APRIL CAR was well tolerated. Five (45.5%) patients developed Grade 1 cytokine release syndrome and there was no neurotoxicity. However, responses were only observed in 45.5% patients (1×very good partial response, 3×partial response, 1×minimal response). Exploring the mechanistic basis for poor responses, we then compared the APRIL CAR to two other BCMA CARs in a series of in vitro assays, observing reduced interleukin-2 secretion and lack of sustained tumor control by APRIL CAR regardless of transduction method or co-stimulatory domain. There was also impaired interferon signaling of APRIL CAR and no evidence of autoactivation. Thus focusing on APRIL itself, we confirmed similar affinity to BCMA and protein stability in comparison to BCMA CAR binders but reduced binding by cell-expressed APRIL to soluble BCMA and reduced avidity to tumor cells. This indicated either suboptimal folding or stability of membrane-bound APRIL attenuating CAR activation. CONCLUSIONS: The APRIL CAR was well tolerated, but the clinical responses observed in AUTO2 were disappointing. Subsequently, when comparing the APRIL CAR to other BCMA CARs, we observed in vitro functional deficiencies due to reduced target binding by cell-expressed ligand.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva/métodos , Mieloma Múltiplo/tratamento farmacológico , Ligantes , Antígeno de Maturação de Linfócitos B/metabolismo , Antígeno de Maturação de Linfócitos B/uso terapêutico , Linfócitos T
5.
Sci Transl Med ; 13(623): eabh1962, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34878825

RESUMO

Despite the high remission rates achieved using T cells bearing a chimeric antigen receptor (CAR) against hematogical malignancies, there is still a considerable proportion of patients who eventually experience tumor relapse. Clinical studies have established that mechanisms of treatment failure include the down-regulation of target antigen expression and the limited persistence of effective CAR T cells. We hypothesized that dual targeting mediated by a CAR and a chimeric costimulatory receptor (CCR) could simultaneously enhance T cell cytotoxicity and improve durability. Concomitant high-affinity engagement of a CD38-binding CCR enhanced the cytotoxicity of BCMA-CAR and CD19-CAR T cells by increasing their functional binding avidity. In comparison to second-generation BCMA-CAR or CD19-CAR T cells, double-targeted CAR + CD38-CCR T cells exhibited increased sensitivity to recognize and lyse tumor variants of multiple myeloma and acute lymphoblastic leukemia with low antigen density in vitro. In addition, complimentary costimulation by 4-1BB and CD28 endodomains provided by the CAR and CCR combination conferred increased cytokine secretion and expansion and improved persistence in vivo. The cumulatively improved properties of CAR + CCR T cells enabled the in vivo eradication of antigen-low tumor clones, which were otherwise resistant to treatment with conventional CAR T cells. Therefore, multiplexing targeting and costimulation through the combination of a CAR and a CCR is a powerful strategy to improve the clinical outcomes of CAR T cells by enhancing cytotoxic efficacy and persistence, thus preventing relapses of tumor clones with low target antigen density.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Antígenos CD19 , Humanos , Imunoterapia Adotiva , Mieloma Múltiplo/terapia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T
6.
Cancers (Basel) ; 13(21)2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34771556

RESUMO

Acute myeloid leukemia (AML) is a hematological malignancy caused by clonal expansion of myeloid progenitor cells. Most patients with AML respond to chemotherapy, but relapses often occur and infer a very poor prognosis. Thirty to thirty-five percent of AMLs carry a four base pair insertion in the nucleophosmin 1 gene (NPM1) with a C-terminal alternative reading frame of 11 amino acids. We previously identified various neopeptides from the alternative reading frame of mutant NPM1 (dNPM1) on primary AML and isolated an HLA-A*02:01-restricted T-cell receptor (TCR) that enables human T-cells to kill AML cells upon retroviral gene transfer. Here, we isolated T-cells recognizing the dNPM1 peptide AVEEVSLRK presented in HLA-A*11:01. The TCR cloned from a T-cell clone recognizing HLA-A*11:01+ primary AML cells conferred in vitro recognition and lysis of AML upon transfer to CD8 cells, but failed to induce an anti-tumor effect in immunodeficient NSG mice engrafted with dNPM1 OCI-AML3 cells. In conclusion, our data show that AVEEVSLRK is a dNPM1 neoantigen on HLA-A*11:01+ primary AMLs. CD8 cells transduced with an HLA-A*11:01-restricted TCR for dNPM1 were reactive against AML in vitro. The absence of reactivity in a preclinical mouse model requires further preclinical testing to predict the potential efficacy of this TCR in clinical development.

7.
Development ; 148(20)2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34528674

RESUMO

Specialized stromal cells occupy and help define B- and T-cell domains, which are crucial for proper functioning of our immune system. Signaling through lymphotoxin and TNF receptors is crucial for the development of different stromal subsets, which are thought to arise from a common precursor. However, mechanisms that control the selective generation of the different stromal phenotypes are not known. Using in vitro cultures of embryonic mouse stromal cells, we show that retinoic acid-mediated signaling is important for the differentiation of precursors towards the Cxcl13pos follicular dendritic cell (FDC) lineage, and also blocks lymphotoxin-mediated Ccl19pos fibroblastic reticular cell lineage differentiation. Accordingly, at the day of birth we observe the presence of Cxcl13posCcl19neg/low and Cxcl13neg/lowCcl19pos cells within neonatal lymph nodes. Furthermore, ablation of retinoic acid receptor signaling in stromal precursors early after birth reduces Cxcl13 expression, and complete blockade of retinoic acid signaling prevents the formation of FDC networks in lymph nodes.


Assuntos
Células Dendríticas Foliculares/metabolismo , Células Dendríticas Foliculares/fisiologia , Linfonodos/metabolismo , Linfonodos/fisiologia , Transdução de Sinais/fisiologia , Tretinoína/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Células Estromais/metabolismo , Células Estromais/fisiologia
9.
Cell Rep ; 30(12): 4110-4123.e4, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32209472

RESUMO

Within lymph nodes (LNs), T follicular helper (TFH) cells help B cells to produce antibodies, which can either be protective or autoreactive. Here, we demonstrate that murine LN stromal cells (LNSCs) suppress the formation of autoreactive TFH cells in an antigen-specific manner, thereby significantly reducing germinal center B cell responses directed against the same self-antigen. Mechanistically, LNSCs express and present self-antigens in major histocompatibility complex (MHC) class II, leading to the conversion of naive CD4+ T cells into T regulatory (TREG) cells in an interleukin-2 (IL-2)-dependent manner. Upon blockade of TREG cells, using neutralizing IL-2 antibodies, autoreactive TFH cells are allowed to develop. We conclude that the continuous presentation of self-antigens by LNSCs is critical to generate antigen-specific TREG cells, thereby repressing the formation of TFH cells and germinal center B cell responses. Our findings uncover the ability of LNSCs to suppress the early activation of autoreactive immune cells and maintain peripheral tolerance.


Assuntos
Linfócitos B/imunologia , Epitopos/imunologia , Linfonodos/citologia , Linfócitos T Reguladores/imunologia , Animais , Apresentação de Antígeno/imunologia , Antígenos CD/metabolismo , Autoantígenos/imunologia , Centro Germinativo/imunologia , Humanos , Interleucina-2/metabolismo , Camundongos Endogâmicos C57BL , Células Estromais/citologia
10.
Mol Ther ; 28(1): 64-74, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31636040

RESUMO

Generation of an optimal T cell therapeutic expressing high frequencies of transgenic T cell receptor (tgTCR) is essential for improving TCR gene therapy. Upon TCR gene transfer, presence of endogenous TCRαß reduces expression of tgTCR due to TCR mixed-dimer formation and competition for binding CD3. Knockout (KO) of endogenous TCRαß was recently achieved using CRISPR/Cas9 editing of the TRAC or TRBC loci, resulting in increased expression and function of tgTCR. Here, we adopt this approach into current protocols for generating T cell populations expressing tgTCR to validate this strategy in the context of four clinically relevant TCRs. First, simultaneous editing of TRAC and TRBC loci was reproducible and resulted in high double KO efficiencies in bulk CD8 T cells. Next, tgTCR expression was significantly higher in double TRAC/BC KO conditions for all TCRs tested, including those that contained structural modifications to encourage preferential pairing. Finally, increased expression of tgTCR in edited T cell populations allowed for increased recognition of antigen expressing tumor targets and prolonged control of tumor outgrowth in a preclinical model of multiple myeloma. In conclusion, CRISPR/Cas9-mediated KO of both endogenous TCRαß chains can be incorporated in current T cell production protocols and is preferential to ensure an improved and safe clinical therapeutic.


Assuntos
Transferência Adotiva/métodos , Sistemas CRISPR-Cas , Edição de Genes/métodos , Terapia Genética/métodos , Mieloma Múltiplo/terapia , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Transferência Adotiva/efeitos adversos , Animais , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos , Feminino , Genes Codificadores dos Receptores de Linfócitos T , Terapia Genética/efeitos adversos , Voluntários Saudáveis , Humanos , Células K562 , Masculino , Camundongos , Camundongos Endogâmicos NOD , Mieloma Múltiplo/patologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Transdução Genética , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Nat Commun ; 10(1): 4451, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31575864

RESUMO

TCR-gene-transfer is an efficient strategy to produce therapeutic T cells of defined antigen specificity. However, there are substantial variations in the cell surface expression levels of human TCRs, which can impair the function of engineered T cells. Here we demonstrate that substitutions of 3 amino acid residues in the framework of the TCR variable domains consistently increase the expression of human TCRs on the surface of engineered T cells.The modified TCRs mediate enhanced T cell proliferation, cytokine production and cytotoxicity, while reducing the peptide concentration required for triggering effector function up to 3000-fold. Adoptive transfer experiments in mice show that modified TCRs control tumor growth more efficiently than wild-type TCRs. Our data indicate that simple variable domain modifications at a distance from the antigen-binding loops lead to increased TCR expression and improved effector function. This finding provides a generic platform to optimize the efficacy of TCR gene therapy in humans.


Assuntos
Antígenos/imunologia , Engenharia Celular , Genes Codificadores dos Receptores de Linfócitos T/genética , Genes Codificadores dos Receptores de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Citocinas/metabolismo , Expressão Gênica , Terapia Genética , Humanos , Lectinas Tipo C/metabolismo , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Modelos Moleculares , Domínios Proteicos , Engenharia de Proteínas , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia
12.
J Clin Invest ; 129(2): 774-785, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30640174

RESUMO

The most frequent subtype of acute myeloid leukemia (AML) is defined by mutations in the nucleophosmin 1 (NPM1) gene. Mutated NPM1 (ΔNPM1) is an attractive target for immunotherapy, since it is an essential driver gene and 4 bp frameshift insertions occur in the same hotspot in 30%-35% of AMLs, resulting in a C-terminal alternative reading frame of 11 aa. By searching the HLA class I ligandome of primary AMLs, we identified multiple ΔNPM1-derived peptides. For one of these peptides, HLA-A*02:01-binding CLAVEEVSL, we searched for specific T cells in healthy individuals using peptide-HLA tetramers. Tetramer-positive CD8+ T cells were isolated and analyzed for reactivity against primary AMLs. From one clone with superior antitumor reactivity, we isolated the T cell receptor (TCR) and demonstrated specific recognition and lysis of HLA-A*02:01-positive ΔNPM1 AML after retroviral transfer to CD8+ and CD4+ T cells. Antitumor efficacy of TCR-transduced T cells was confirmed in immunodeficient mice engrafted with a human AML cell line expressing ΔNPM1. In conclusion, the data show that ΔNPM1-derived peptides are presented on AML and that CLAVEEVSL is a neoantigen that can be efficiently targeted on AML by ΔNPM1 TCR gene transfer. Immunotherapy targeting ΔNPM1 may therefore contribute to treatment of AML.


Assuntos
Transferência Adotiva , Leucemia Mieloide Aguda , Mutação , Proteínas de Neoplasias , Proteínas Nucleares , Peptídeos , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Feminino , Antígeno HLA-A2/genética , Antígeno HLA-A2/imunologia , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/terapia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Proteínas Nucleares/genética , Proteínas Nucleares/imunologia , Nucleofosmina , Peptídeos/genética , Peptídeos/imunologia , Transdução Genética , Ensaios Antitumorais Modelo de Xenoenxerto
13.
J Immunol ; 202(1): 171-182, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30504420

RESUMO

Innate lymphoid cells (ILCs) guard epithelial tissue integrity during homeostasis, but can be potent immune effector cells during inflammation. Precursors to all ILC subsets (ILC precursors [ILCP]) have been identified in human peripheral blood (PB). We found that during homeostasis, ILCP in PB of mouse and human expressed homing receptors for secondary lymphoid organs, mainly CD62L. These ILCP entered mouse lymph nodes in a CD62L-dependent way and relied on S1P receptors for their exit. Importantly, CD62L expression was absent on human ILCs expressing NKp44 in tonsils and PB of Crohn disease patients, and relatively fewer CD62L+ ILCP were present in PB of Crohn disease patients. These data are in agreement with selective expression of CD62L on nonactivated ILCP. As such, we conclude that CD62L not only serves as a functional marker of ILCP, but has potential to be used in the clinic as a diagnostic marker in inflammatory disorders.


Assuntos
Células Sanguíneas/imunologia , Doença de Crohn/imunologia , Selectina L/metabolismo , Linfonodos/imunologia , Linfócitos/imunologia , Células Progenitoras Linfoides/fisiologia , Animais , Células Cultivadas , Feminino , Homeostase , Humanos , Imunidade Inata , Selectina L/genética , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor 2 Desencadeador da Citotoxicidade Natural/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo
14.
J Extracell Vesicles ; 7(1): 1446660, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29696074

RESUMO

Cancer cells release extracellular vesicles (EVs) that contain functional biomolecules such as RNA and proteins. EVs are transferred to recipient cancer cells and can promote tumour progression and therapy resistance. Through RNAi screening, we identified a novel EV uptake mechanism involving a triple interaction between the chemokine receptor CCR8 on the cells, glycans exposed on EVs and the soluble ligand CCL18. This ligand acts as bridging molecule, connecting EVs to cancer cells. We show that glioblastoma EVs promote cell proliferation and resistance to the alkylating agent temozolomide (TMZ). Using in vitro and in vivo stem-like glioblastoma models, we demonstrate that EV-induced phenotypes are neutralised by a small molecule CCR8 inhibitor, R243. Interference with chemokine receptors may offer therapeutic opportunities against EV-mediated cross-talk in glioblastoma.

15.
Front Immunol ; 9: 206, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29472931

RESUMO

For full activation of naïve adaptive lymphocytes in skin-draining lymph nodes (LNs), presentation of peptide:MHC complexes by LN-resident and skin-derived dendritic cells (DCs) that encountered antigens (Ags) is an absolute prerequisite. To get to the nearest draining LN upon intradermal immunization, DCs need to migrate from the infection site to the afferent lymphatics, which can only be reached by traversing a collagen-dense network located in the dermis of the skin through the activity of proteolytic enzymes. Here, we show that mice with altered collagen fibrillogenesis resulting in thicker collagen fibers in the skin display a reduced DC migration to the draining LN upon immune challenge. Consequently, the initiation of the cellular and humoral immune response was diminished. Ag-specific CD8+ and CD4+ T cells as well as Ag-specific germinal center B cells and serum immunoglobulin levels were significantly decreased. Hence, we postulate that alterations to the production of extracellular matrix, as seen in various connective tissue disorders, may in the end affect the qualitative outcome of adaptive immunity.


Assuntos
Imunidade Adaptativa , Movimento Celular/imunologia , Dermatan Sulfato/metabolismo , Células de Langerhans/imunologia , Linfonodos/imunologia , Animais , Biópsia , Linfócitos T CD8-Positivos/imunologia , Carboidratos Epimerases/deficiência , Carboidratos Epimerases/genética , Dermatan Sulfato/imunologia , Feminino , Células de Langerhans/metabolismo , Linfonodos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Pele/citologia , Pele/imunologia , Pele/patologia
16.
J Exp Med ; 215(4): 1069-1077, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29472496

RESUMO

IL-7 is essential for the development and homeostasis of T and B lymphocytes and is critical for neonatal lymph node organogenesis because Il7-/- mice lack normal lymph nodes. Whether IL-7 is a continued requirement for normal lymph node structure and function is unknown. To address this, we ablated IL-7 function in normal adult hosts. Either inducible Il7 gene deletion or IL-7R blockade in adults resulted in a rapid loss of lymph node cellularity and a corresponding defect in lymphocyte entry into lymph nodes. Although stromal and dendritic cell components of lymph nodes were present in normal numbers and representation, innate lymphoid cell (ILC) subpopulations were substantially decreased after IL-7 ablation. Testing lymphocyte homing in bone marrow chimeras reconstituted with Rorc-/- bone marrow confirmed that ILC3s in lymph nodes are required for normal lymphocyte homing. Collectively, our data suggest that maintenance of intact lymph nodes relies on IL-7-dependent maintenance of ILC3 cells.


Assuntos
Linfócitos B/citologia , Imunidade Inata , Interleucina-7/metabolismo , Linfonodos/citologia , Linfócitos/citologia , Linfócitos/metabolismo , Linfócitos T/citologia , Animais , Movimento Celular , Células Dendríticas/metabolismo , Deleção de Genes , Loci Gênicos , Contagem de Linfócitos , Camundongos Endogâmicos C57BL , Tamanho do Órgão , Receptores de Interleucina-7/metabolismo , Células Estromais/metabolismo
17.
Cell Rep ; 21(3): 823-833, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-29045847

RESUMO

A substantial number of human and mouse group 3 innate lymphoid cells (ILC3s) reside in secondary lymphoid organs, yet the phenotype and function of these ILC3s is incompletely understood. Here, we employed an unbiased cross-tissue transcriptomic approach to compare human ILC3s from non-inflamed lymph nodes and spleen to their phenotypic counterparts in inflamed tonsils and from circulation. These analyses revealed that, in the absence of inflammation, lymphoid organ-residing ILC3s lack transcription of cytokines associated with classical ILC3 functions. This was independent of expression of the natural cytotoxicity receptor NKp44. However, and in contrast to ILC3s from peripheral blood, lymphoid organ-residing ILC3s express activating cytokine receptors and have acquired the ability to be recruited into immune responses by inflammatory cytokines. This comprehensive cross-tissue dataset will allow for identification of functional changes in human lymphoid organ ILC3s associated with human disease.


Assuntos
Ciclo Celular/genética , Perfilação da Expressão Gênica/métodos , Imunidade Inata , Inflamação/imunologia , Sistema Linfático/metabolismo , Linfócitos/metabolismo , Linfócitos/patologia , Animais , Comunicação Celular/genética , Citocinas/genética , Citocinas/metabolismo , Humanos , Camundongos , Receptor 2 Desencadeador da Citotoxicidade Natural/metabolismo , Transcrição Gênica , Transcriptoma/genética
18.
Sci Rep ; 7: 46229, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28401953

RESUMO

Heparanase is an endo-glucuronidase that degrades heparan sulfate chains. The enzyme is expressed at a low level in normal organs; however, elevated expression of heparanase has been detected in several inflammatory conditions, e.g. in the synovial joints of rheumatoid arthritis (RA) patients. Herein, we have applied the model of collagen-induced arthritis (CIA) to transgenic mice overexpressing human heparanase (Hpa-tg) along with wildtype (WT) mice. About 50% of the induced animals developed clinical symptoms, i.e. swelling of joints, and there were no differences between the Hpa-tg and WT mice in the incidence of disease. However, Hpa-tg mice displayed an earlier response and developed more severe symptoms. Examination of cells from thymus, spleen and lymph nodes revealed increased innate and adaptive immune responses of the Hpa-tg mice, reflected by increased proportions of macrophages, antigen presenting cells and plasmacytoid dendritic cells as well as Helios-positive CD4+ and CD8+ T cells. Furthermore, splenic lymphocytes from Hpa-tg mice showed higher proliferation activity. Our results suggest that elevated expression of heparanase augmented both the innate and adaptive immune system and propagated inflammatory reactions in the murine RA model.


Assuntos
Artrite Reumatoide/enzimologia , Artrite Reumatoide/imunologia , Glucuronidase/metabolismo , Inflamação/patologia , Linfócitos T/imunologia , Animais , Antígenos CD/metabolismo , Artrite Experimental/imunologia , Artrite Experimental/patologia , Galinhas , Modelos Animais de Doenças , Imunidade Inata , Interferon gama/metabolismo , Interleucina-17/metabolismo , Linfonodos/patologia , Contagem de Linfócitos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Baço/patologia
19.
PLoS One ; 11(12): e0167555, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27907202

RESUMO

The stromal compartment of secondary lymphoid organs is classicaly known for providing a mechanical scaffold for the complex interactions between hematopoietic cells during immune activation as well as for providing a niche which is favorable for survival of lymphocytes. In recent years, it became increasingly clear that these cells also play an active role during such a response. Currently, knowledge of the interactions between human lymphoid stroma and hematopoietic cells is still lacking and most insight is based on murine systems. Although methods to isolate stromal cells from tonsils have been reported, data on stability in culture, characterization, and functional properties are lacking. Here, we describe a reproducible and easy method for isolation and in vitro culture of functional human lymphoid stromal cells from palatine tonsils. The cells isolated express markers and characteristics of T cell zone fibroblastic reticular cells (FRCs) and react to inflammatory stimuli by upregulating inflammatory cytokines and chemokines as well as adhesion molecules, as previously described for mouse lymphoid stroma. Also, cultured tonsil stromal cells support survival of human innate lymphoid cells, showing that these stromal cells can function as bone fide FRCs, providing a favorable microenvironment for hematopoietic cells.


Assuntos
Moléculas de Adesão Celular/imunologia , Comunicação Celular/imunologia , Separação Celular/métodos , Citocinas/imunologia , Tonsila Palatina/citologia , Células Estromais/citologia , Animais , Antígenos CD/genética , Antígenos CD/imunologia , Biomarcadores/metabolismo , Moléculas de Adesão Celular/genética , Técnicas de Cocultura , Citocinas/genética , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/imunologia , Fibroblastos/citologia , Fibroblastos/imunologia , Citometria de Fluxo , Expressão Gênica , Humanos , Interferon gama/farmacologia , Camundongos , Tonsila Palatina/imunologia , Cultura Primária de Células , Transdução de Sinais , Células Estromais/efeitos dos fármacos , Células Estromais/imunologia , Linfócitos T/citologia , Linfócitos T/imunologia , Fator de Necrose Tumoral alfa/farmacologia
20.
Eur J Immunol ; 46(6): 1404-14, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27067635

RESUMO

Interleukin 22 (IL-22) expression is associated with increased joint destruction and disease progression in rheumatoid arthritis (RA). Although IL-22 is considered a pro-inflammatory cytokine, its mechanism of action in RA remains incompletely understood. Here, we used the collagen-induced arthritis model in IL-22 deficient (IL-22(-/-) ) mice to study the role of IL-22 in RA. In spite of normal disease incidence, disease severity is significantly diminished in IL-22(-/-) mice. Moreover, pathogenicity of Th17 cells and development and function of B cells are unaffected. In contrast, splenic plasma cells, as well as serum autoantibody titers, are reduced in the absence of IL-22. At the peak of disease, germinal centers (GCs) are severely reduced in the spleens of IL-22(-/-) mice, correlating with a decline in GC B-cell numbers. Within the GC, we identified IL-22R1 expressing follicular dendritic cell-like stromal cells. Human lymphoid stromal cells respond to IL-22 ex vivo by inducing transcription of CXCL12 and CXCL13. We therefore postulate IL-22 as an important enhancer of the GC reaction, maintaining chemokine levels for the persistence of GC reactions, essential for the production of autoantibody-secreting plasma cells. Blocking IL-22 might therefore prevent immune-complex deposition and destruction of joints in RA patients.


Assuntos
Formação de Anticorpos/genética , Formação de Anticorpos/imunologia , Artrite Experimental/etiologia , Autoanticorpos/imunologia , Interleucinas/deficiência , Animais , Especificidade de Anticorpos/imunologia , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Células Cultivadas , Quimiocinas/genética , Quimiocinas/metabolismo , Técnicas de Cocultura , Modelos Animais de Doenças , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Knockout , Plasmócitos/imunologia , Plasmócitos/metabolismo , Receptores de Interleucina/genética , Receptores de Interleucina/metabolismo , Índice de Gravidade de Doença , Células Estromais/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Interleucina 22
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA