Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Res Sq ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39108472

RESUMO

Background: Climatological shifts and human activities have decimated lakes worldwide. Water in the Great Salt Lake, Utah, USA is at near record lows which has increased risks for exposure to windblown dust from dried lakebed sediments. Formal studies evaluating the health effects of inhaled Great Salt Lake dust (GSLD) have not been performed despite the belief that the dust is harmful. The objectives of this study were to illustrate windblown dust events, assess the impact of inhaled dust on the lungs, and to identify mechanisms that could contribute to the effects of GSLD in the lungs. Results: An animation, hourly particle and meteorological data, and images illustrate the impact of dust events on the Salt Lake Valley/Wasatch front airshed. Great Salt Lake sediment and PM2.5 contained metals, lipopolysaccharides, natural and anthropogenic chemicals, and bacteria. Inhalation and oropharyngeal delivery of PM2.5 triggered neutrophilia and the expression of mRNA for Il6, Cxcl1, Cxcl2, and Muc5ac in mouse lungs, was more potent than coal fly ash (CFA) PM2.5, and more cytotoxic to human airway epithelial cells (HBEC3-KT) in vitro. Induction of IL6 and IL8 was replicated in vitro using HBEC3-KT and THP-1 cells. For HBEC3-KT cells, IL6 induction was variably attenuated by EGTA/ruthenium red, the TLR4 inhibitor TAK-242, and deferoxamine, while IL8 was attenuated by EGTA/ruthenium red. Inhibition of mRNA induction by EGTA/ruthenium red suggested roles for transition metals, calcium, and calcium channels as mediators of the responses. Like CFA, GSLD and a similar dust from the Salton Sea in California, activated human TRPA1, M8, and V1. However, only inhibition of TRPV1, TRPV3, and a combination of both channels impacted cytokine mRNA induction in HBEC3-KT cells. Responses of THP1 cells were partially mediated by TLR4 as opposed to TRP channels and mice expressing a "humanized" form of TRPV1 exhibited greater neutrophilia when exposed to GSLD via inhalation. Conclusions: This study suggests that windblown dust from Great Salt Lake and similar lake sediments could pose a risk to humans via mechanisms including the activation of TRPV1/V3, TLR4, and possibly oxidative stress.

2.
J Immunol ; 213(5): 600-611, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39033086

RESUMO

The aryl hydrocarbon receptor (AHR) is a receptor/transcription factor widely expressed in the lung. The physiological roles of AHR expressed in the alveolar epithelium remain unclear. In this study, we tested the hypothesis that alveolar epithelial AHR activity plays an important role in modulating inflammatory responses and maintaining alveolar integrity during lung injury and repair. AHR is expressed in alveolar epithelial cells (AECs) and is active. AHR activation with the endogenous AHR ligand, FICZ (5,11-dihydroindolo[3,2-b] carbazole-6-carboxaldehyde), significantly suppressed inflammatory cytokine expression in response to inflammatory stimuli in primary murine AECs and in the MLE-15 epithelial cell line. In an LPS model of acute lung injury in mice, coadministration of FICZ with LPS suppressed protein leak, reduced neutrophil accumulation in BAL fluid, and suppressed inflammatory cytokine expression in lung tissue and BAL fluid. Relevant to healing following inflammatory injury, AHR activation suppressed TGF-ß-induced expression of genes associated with epithelial-mesenchymal transition. Knockdown of AHR in primary AECs with shRNA or in CRISPR-Cas-9-induced MLE-15 cells resulted in upregulation of α-smooth muscle actin (αSma), Col1a1, and Fn1 and reduced expression of epithelial genes Col4a1 and Sdc1. MLE-15 clones lacking AHR demonstrated accelerated wound closure in a scratch model. AHR activation with FICZ enhanced barrier function (transepithelial electrical resistance) in primary murine AECs and limited decline of transepithelial electrical resistance following inflammatory injury. AHR activation in AECs preserves alveolar integrity by modulating inflammatory cytokine expression while enhancing barrier function and limiting stress-induced expression of mesenchymal genes.


Assuntos
Células Epiteliais Alveolares , Receptores de Hidrocarboneto Arílico , Animais , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Camundongos , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/imunologia , Inflamação/imunologia , Camundongos Endogâmicos C57BL , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/metabolismo , Linhagem Celular , Citocinas/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos
3.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38928254

RESUMO

Genetic variation among inhaled corticosteroid (ICS)-metabolizing enzymes may affect asthma control, but evidence is limited. This study tested the hypothesis that single-nucleotide polymorphisms (SNPs) in Cytochrome P450 3A5 (CYP3A5) would affect asthma outcomes. Patients aged 2-18 years with persistent asthma were recruited to use the electronic AsthmaTracker (e-AT), a self-monitoring tool that records weekly asthma control, medication use, and asthma outcomes. A subset of patients provided saliva samples for SNP analysis and participated in a pharmacokinetic study. Multivariable regression analysis adjusted for age, sex, race, and ethnicity was used to evaluate the impact of CYP3A5 SNPs on asthma outcomes, including asthma control (measured using the asthma symptom tracker, a modified version of the asthma control test or ACT), exacerbations, and hospital admissions. Plasma corticosteroid and cortisol concentrations post-ICS dosing were also assayed using liquid chromatography-tandem mass spectrometry. Of the 751 patients using the e-AT, 166 (22.1%) provided saliva samples and 16 completed the PK study. The e-AT cohort was 65.1% male, and 89.6% White, 6.0% Native Hawaiian, 1.2% Black, 1.2% Native American, 1.8% of unknown race, and 15.7% Hispanic/Latino; the median age was 8.35 (IQR: 5.51-11.3) years. CYP3A5*3/*3 frequency was 75.8% in White subjects, 50% in Native Hawaiians and 76.9% in Hispanic/Latino subjects. Compared with CYP3A5*3/*3, the CYP3A5*1/*x genotype was associated with reduced weekly asthma control (OR: 0.98; 95% CI: 0.97-0.98; p < 0.001), increased exacerbations (OR: 6.43; 95% CI: 4.56-9.07; p < 0.001), and increased asthma hospitalizations (OR: 1.66; 95% CI: 1.43-1.93; p < 0.001); analysis of 3/*3, *1/*1 and *1/*3 separately showed an allelic copy effect. Finally, PK analysis post-ICS dosing suggested muted changes in cortisol concentrations for patients with the CYP3A5*3/*3 genotype, as opposed to an effect on ICS PK. Detection of CYP3A5*3/3, CYPA35*1/*3, and CYP3A5*1/*1 could impact inhaled steroid treatment strategies for asthma in the future.


Assuntos
Corticosteroides , Asma , Citocromo P-450 CYP3A , Polimorfismo de Nucleotídeo Único , Humanos , Asma/tratamento farmacológico , Asma/genética , Criança , Masculino , Feminino , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Adolescente , Pré-Escolar , Corticosteroides/uso terapêutico , Corticosteroides/farmacocinética , Corticosteroides/administração & dosagem , Genótipo , Hidrocortisona/sangue , Saliva/metabolismo , Resultado do Tratamento
4.
Drug Metab Dispos ; 52(8): 836-846, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38772712

RESUMO

This study investigated an association between the cytochrome P450 (CYP) 2C8*3 polymorphism with asthma symptom control in children and changes in lipid metabolism and pro-inflammatory signaling by human bronchial epithelial cells (HBECs) treated with cigarette smoke condensate (CSC). CYP genes are inherently variable in sequence, and while such variations are known to produce clinically relevant effects on drug pharmacokinetics and pharmacodynamics, the effects on endogenous substrate metabolism and associated physiologic processes are less understood. In this study, CYP2C8*3 was associated with improved asthma symptom control among children: Mean asthma control scores were 3.68 (n = 207) for patients with one or more copies of the CYP2C8*3 allele versus 4.42 (n = 965) for CYP2C8*1/*1 (P = 0.0133). In vitro, CYP2C8*3 was associated with an increase in montelukast 36-hydroxylation and a decrease in linoleic acid metabolism despite lower mRNA and protein expression. Additionally, CYP2C8*3 was associated with reduced mRNA expression of interleukin-6 (IL-6) and C-X-C motif chemokine ligand 8 (CXCL-8) by HBECs in response to CSC, which was replicated using the soluble epoxide hydrolase inhibitor, 12-[[(tricyclo[3.3.1.13,7]dec-1-ylamino)carbonyl]amino]-dodecanoic acid. Interestingly, 9(10)- and 12(13)- dihydroxyoctadecenoic acid, the hydrolyzed metabolites of 9(10)- and 12(13)- epoxyoctadecenoic acid, increased the expression of IL-6 and CXCL-8 mRNA by HBECs. This study reveals previously undocumented effects of the CYP2C8*3 variant on the response of HBECs to exogenous stimuli. SIGNIFICANCE STATEMENT: These findings suggest a role for CYP2C8 in regulating the epoxyoctadecenoic acid:dihydroxyoctadecenoic acid ratio leading to a change in cellular inflammatory responses elicited by environmental stimuli that exacerbate asthma.


Assuntos
Asma , Brônquios , Citocromo P-450 CYP2C8 , Células Epiteliais , Humanos , Asma/tratamento farmacológico , Asma/genética , Asma/metabolismo , Citocromo P-450 CYP2C8/genética , Citocromo P-450 CYP2C8/metabolismo , Criança , Masculino , Feminino , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Brônquios/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Adolescente , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Inflamação/genética , Inflamação/metabolismo , Células Cultivadas , Quinolinas/farmacologia , Polimorfismo de Nucleotídeo Único , Acetatos , Ciclopropanos , Sulfetos
5.
Plast Reconstr Surg ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652817

RESUMO

BACKGROUND: Partial-thickness skin wounds are some of the most painful injuries due to large areas of exposed nerve endings. These injuries often require systemic opioid treatments to manage pain adequately. However, in 2021 alone, the CDC reported nearly 17,000 prescription opioid-related deaths in the USA, highlighting the ongoing need for non-opioid treatment strategies. In this manuscript, we developed a novel single-application ropivacaine-eluting primary wound dressing that could provide sustained ropivacaine delivery to partial-thickness wounds and assessed its in vivo feasibility for prolonged non-opioid analgesia. METHODS: Sustained release of ropivacaine from a poly(lactide-co-e-caprolactone) matrix was first optimized in vitro using dissolution testing and a Box Behnken design of experiments. The optimized dressing was then tested against a clinical control silicone dressing in a porcine partial-thickness wound study to assess analgesic effect, pharmacokinetics, and wound healing. RESULTS: The ropivacaine-eluting dressing showed a moderate analgesic effect in vivo, where normalized single pinprick scores significantly improved pain over the testing period (4-168h) (control vs treatment: 232±25% vs 145±16%, p<0.0003). Ropivacaine blood plasma levels peaked at 8 hours post-treatment, with a maximum concentration of 246 ± 74 ng/mL. No significant differences in wound healing were found when compared to control. CONCLUSION: The ropivacaine-loaded poly(lactide-co-e-caprolactone)-based wound dressing provided sustained delivery of ropivacaine to partial-thickness skin wounds and enhanced analgesic effect compared to a clinical standard control dressing.

7.
Sci Rep ; 13(1): 13790, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612326

RESUMO

Heat shock protein 90 (Hsp90) and its co-chaperones promote cancer, and targeting Hsp90 holds promise for cancer treatment. Most of the efforts to harness this potential have focused on targeting the Hsp90 N-terminus ATP binding site. Although newer-generation inhibitors have shown improved efficacy in aggressive cancers, induction of the cellular heat shock response (HSR) by these inhibitors is thought to limit their clinical efficacy. Therefore, Hsp90 inhibitors with novel mechanisms of action and that do not trigger the HSR would be advantageous. Here, we investigated the mechanism by which capsaicin inhibits Hsp90. Through mutagenesis, chemical modifications, and proteomic studies, we show that capsaicin binds to the N-terminus of Hsp90 and inhibits its ATPase activity. Consequently, capsaicin and its analogs inhibit Hsp90 ATPase-dependent progesterone receptor reconstitution in vitro. Capsaicin did not induce the HSR, instead, it promoted the degradation of Hsp70 through the lysosome-autophagy pathway. Remarkably, capsaicin did not induce degradation of the constitutively expressed cognate Hsc70, indicating selectivity for Hsp70. Combined treatments of capsaicin and the Hsp90 inhibitor 17-AAG improved the anti-tumor efficacy of 17-AAG in cell culture and tridimensional tumor spheroid growth assays using breast and prostate cancer models. Consistent with this, in silico docking studies revealed that capsaicin binding to the ATP binding site of Hsp90 was distinct from classical N-terminus Hsp90 inhibitors, indicating a novel mechanism of action. Collectively, these findings support the use of capsaicin as a chemical scaffold to develop novel Hsp90 N-terminus inhibitors as well as its ability to be a potential cancer co-therapeutic.


Assuntos
Capsaicina , Neoplasias da Próstata , Masculino , Humanos , Capsaicina/farmacologia , Proteômica , Proteínas de Choque Térmico HSP70 , Proteínas de Choque Térmico HSP90 , Lisossomos , Adenosina Trifosfatases , Trifosfato de Adenosina
8.
bioRxiv ; 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37577550

RESUMO

Asthma is deemed an inflammatory disease, yet the defining diagnostic symptom is mechanical bronchoconstriction. We previously discovered a conserved process that drives homeostatic epithelial cell death in response to mechanical cell crowding called cell extrusion(1, 2). Here, we show that the pathological crowding of a bronchoconstrictive attack causes so much epithelial cell extrusion that it damages the airways, resulting in inflammation and mucus secretion. While relaxing airways with the rescue treatment albuterol did not impact these responses, inhibiting live cell extrusion signaling during bronchoconstriction prevented all these symptoms. Our findings propose a new etiology for asthma, dependent on the mechanical crowding of a bronchoconstrictive attack. Our studies suggest that blocking epithelial extrusion, instead of ensuing downstream inflammation, could prevent the feed-forward asthma inflammatory cycle.

9.
Sci Rep ; 13(1): 11864, 2023 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-37481609

RESUMO

While sustained-release buprenorphine (BSR) is used as a long-lasting opioid analgesic in common marmosets (Callithrix jacchus), there are no published studies on pharmaceutical-grade extended-release buprenorphine options such as Ethiqa XR (EXR) for this species. However, BSR is a compounded product and has been reported to cause injection site reactions in multiple species, including marmosets. Additionally, now with the availability of EXR, a pharmaceutical-grade veterinary product, the use of BSR in laboratory animals is not compliant with the Guide for the Care and Use of Laboratory Animals (Guide) unless scientifically justified and approved by the IACUC. We compared pharmacokinetic and safety profiles of BSR (0.15 mg/kg) and EXR (0.1-0.2 mg/kg) administered subcutaneously to adult marmosets. Blood was collected by venipuncture of the saphenous vein at multiple time points (0.25-72 h) and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). EXR between 0.1 and 0.2 mg/kg resulted in a dose-dependent increase in Cmax (1.43-2.51 ng/mL) and were not statistically different from BSR (1.82 ng/mL). Tmax, lambdaz, and t1/2 were not statistically different between formulations. Mean plasma buprenorphine concentrations for BSR and EXR exceeded the therapeutic threshold (0.1 ng/mL) within 0.25 h and lasted for > 72 h. Mild sedation, but neither respiratory depression nor ataxia, was observed for both formulations. BSR injection sites had significantly higher histopathological scores compared to EXR. Video recordings for monitoring drug-induced behavioral changes showed increased animal activity levels after BSR and EXR versus saline controls. Norbuprenorphine, a buprenorphine metabolite associated with respiratory depression, was detected in the plasma after BSR and EXR administration as well as by in vitro liver microsome assays. In conclusion, we recommend using EXR over BSR as a long-lasting buprenorphine analgesic in marmosets because EXR is a pharmaceutical-grade formulation that is compliant with FDA guidelines and the Guide as well as exhibits comparable PK and safety profiles as BSR.


Assuntos
Buprenorfina , Callithrix , Animais , Preparações de Ação Retardada , Cromatografia Líquida , Espectrometria de Massas em Tandem , Callitrichinae
10.
Pharmaceuticals (Basel) ; 16(6)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37375837

RESUMO

This study tested whether a medicinal plant, Vasaka, typically consumed as a tea to treat respiratory malaise, could protect airway epithelial cells (AECs) from wood smoke particle-induced damage and prevent pathological mucus production. Wood/biomass smoke is a pneumotoxic air pollutant. Mucus normally protects the airways, but excessive production can obstruct airflow and cause respiratory distress. Vasaka tea pre- and co-treatment dose-dependently inhibited mucin 5AC (MUC5AC) mRNA induction by AECs treated with wood smoke particles. This correlated with transient receptor potential ankyrin-1 (TRPA1) inhibition, an attenuation of endoplasmic reticulum (ER) stress, and AEC damage/death. Induction of mRNA for anterior gradient 2, an ER chaperone/disulfide isomerase required for MUC5AC production, and TRP vanilloid-3, a gene that suppresses ER stress and wood smoke particle-induced cell death, was also attenuated. Variable inhibition of TRPA1, ER stress, and MUC5AC mRNA induction was observed using selected chemicals identified in Vasaka tea including vasicine, vasicinone, apigenin, vitexin, isovitexin, isoorientin, 9-oxoODE, and 9,10-EpOME. Apigenin and 9,10-EpOME were the most cytoprotective and mucosuppressive. Cytochrome P450 1A1 (CYP1A1) mRNA was also induced by Vasaka tea and wood smoke particles. Inhibition of CYP1A1 enhanced ER stress and MUC5AC mRNA expression, suggesting a possible role in producing protective oxylipins in stressed cells. The results provide mechanistic insights and support for the purported benefits of Vasaka tea in treating lung inflammatory conditions, raising the possibility of further development as a preventative and/or restorative therapy.

11.
Acta Pharm Sin B ; 13(1): 68-81, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36815047

RESUMO

Pain is often debilitating, and current treatments are neither universally efficacious nor without risks. Transient receptor potential (TRP) ion channels offer alternative targets for pain relief, but little is known about the regulation or identities of endogenous TRP ligands that affect inflammation and pain. Here, transcriptomic and targeted lipidomic analysis of damaged tissue from the mouse spinal nerve ligation (SNL)-induced chronic pain model revealed a time-dependent increase in Cyp1b1 mRNA and a concurrent accumulation of 8,9-epoxyeicosatrienoic acid (EET) and 19,20-EpDPA post injury. Production of 8,9-EET and 19,20-EpDPA by human/mouse CYP1B1 was confirmed in vitro, and 8,9-EET and 19,20-EpDPA selectively and dose-dependently sensitized and activated TRPA1 in overexpressing HEK-293 cells and Trpa1-expressing/AITC-responsive cultured mouse peptidergic dorsal root ganglia (DRG) neurons. TRPA1 activation by 8,9-EET and 19,20-EpDPA was attenuated by the antagonist A967079, and mouse TRPA1 was more responsive to 8,9-EET and 19,20-EpDPA than human TRPA1. This latter effect mapped to residues Y933, G939, and S921 of TRPA1. Intra-plantar injection of 19,20-EpDPA induced acute mechanical, but not thermal hypersensitivity in mice, which was also blocked by A967079. Similarly, Cyp1b1-knockout mice displayed a reduced chronic pain phenotype following SNL injury. These data suggest that manipulation of the CYP1B1-oxylipin-TRPA1 axis might have therapeutic benefit.

12.
Environ Health Perspect ; 131(2): 27009, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36847817

RESUMO

BACKGROUND: Transient receptor potential ankyrin-1 [transient receptor potential cation channel subfamily A member 1 (TRPA1)] and vanilloid-1 [transient receptor potential cation channel subfamily V member 1 (TRPV1)] detect inhaled irritants, including air pollutants and have roles in the development and exacerbation of asthma. OBJECTIVES: This study tested the hypothesis that increased expression of TRPA1, stemming from expression of the loss-of-function TRPV1 (I585V; rs8065080) polymorphic variant by airway epithelial cells may explain prior observations of worse asthma symptom control among children with the TRPV1 I585I/V genotype, by virtue of sensitizing epithelial cells to particulate materials and other TRPA1 agonists. METHODS: TRP agonists, antagonists, small interfering RNA (siRNA), a nuclear factor kappa light chain enhancer of activated B cells (NF-κB) pathway inhibitor, and kinase activators and inhibitors were used to modulate TRPA1 and TRPV1 expression and function. Treatment of genotyped airway epithelial cells with particulate materials and analysis of asthma control data were used to assess consequences of TRPV1 genotype and variable TRPA1 expression on cellular responses in vitro and asthma symptom control among children as a function of voluntarily reported tobacco smoke exposure. RESULTS: A relationship between higher TRPA1 expression and function and lower TRPV1 expression and function was revealed. Findings of this study pointed to a mechanism whereby NF-κB promoted TRPA1 expression, whereas NF-κB-regulated nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain containing 2 (NLRP2) limited expression. Roles for protein kinase C and p38 mitogen activated protein kinase were also demonstrated. Finally, the TRPV1 I585I/V genotype was associated with increased TRPA1 expression by primary airway epithelial cells and amplified responses to selected air pollution particles in vitro. However, the TRPV1 I585I/V genotype was not associated with worse asthma symptom control among children exposed to tobacco smoke, whereas other TRPA1 and TRPV1 variants were. DISCUSSION: This study provides insights on how airway epithelial cells regulate TRPA1 expression, how TRPV1 genetics can affect TRPA1 expression, and that TRPA1 and TRPV1 polymorphisms differentially affect asthma symptom control. https://doi.org/10.1289/EHP11076.


Assuntos
Poluentes Atmosféricos , Asma , Poluentes Ambientais , Canal de Cátion TRPA1 , Canais de Cátion TRPV , Poluição por Fumaça de Tabaco , Criança , Humanos , Poluentes Atmosféricos/toxicidade , Poeira , Células Epiteliais , Canal de Cátion TRPA1/genética , Canais de Cátion TRPV/genética
13.
Epilepsia ; 63(11): 2937-2948, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36054499

RESUMO

OBJECTIVE: Pharmacokinetics (PK) of a drug drive its exposure, efficacy, and tolerability. A thorough preclinical PK assessment of antiseizure medications (ASMs) is therefore essential to evaluate the clinical potential. We tested protection against evoked seizures of prototype ASMs in conjunction with analysis of plasma and brain PK as a proof-of-principle study to enhance our understanding of drug efficacy and duration of action using rodent seizure models. METHODS: In vivo seizure protection assays were performed in adult male CF-1 mice and Sprague Dawley rats. Clobazam (CLB), N-desmethyl CLB (NCLB), carbamazepine (CBZ), CBZ-10,11-epoxide (CBZE), sodium valproate (VPA), and levetiracetam (LEV) concentrations were quantified in plasma and brain using liquid chromatography-tandem mass spectrometry. Mean concentrations of each analyte were calculated and used to determine PK parameters via noncompartmental analysis in Phoenix WinNonLin. RESULTS: NCLB concentrations were approximately 10-fold greater than CLB in mice. The antiseizure profile of CLB was partially sustained by NCLB in mice. CLB concentrations were lower in rats than in mice. CBZE plasma exposures were approximately 70% of CBZ in both mice and rats, likely contributing to the antiseizure effect of CBZ. VPA showed a relatively short half-life in both mice and rats, which correlated with a sharp decline in efficacy. LEV had a prolonged brain and plasma half-life, associated with a prolonged duration of action in mice. SIGNIFICANCE: The study demonstrates the utility of PK analyses for understanding the seizure protection time course in mice and rats. The data indicate that distinct PK profiles of ASMs between mice and rats likely drive differences in drug efficacy between rodent models.


Assuntos
Anticonvulsivantes , Epilepsia , Masculino , Ratos , Camundongos , Animais , Anticonvulsivantes/uso terapêutico , Anticonvulsivantes/farmacocinética , Epilepsia/tratamento farmacológico , Ratos Sprague-Dawley , Levetiracetam/uso terapêutico , Carbamazepina/uso terapêutico , Convulsões/tratamento farmacológico , Clobazam/uso terapêutico , Benzodiazepinas/uso terapêutico
14.
Atmos Environ (1994) ; 2842022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35937043

RESUMO

Atmospheric aging of combustion particles alters their chemical composition and morphology. Previous studies have reported differences in toxicological responses after exposure to fresh versus aged particles, with chemical composition being the prime suspect behind the differences. However, less is known about the contribution of morphological differences in atmospherically aged particles to toxicological responses, possibly due to the difficulty in resolving the two properties (composition and morphology) that change simultaneously. This study altered the shape of lab-generated combustion particles, without affecting the chemical composition, from fractal-like to a more compact spherical shape, using a water condensation-evaporation method. The two shapes were exposed to a co-culture of human airway epithelial (A549) and differentiated human monocyte (THP-1) cells at air-liquid interface (ALI) conditions. The particles with different shapes were deposited using an electrostatic field-based ALI chamber. For the same mass dose, both shapes were internalized by cells, induced a pro-inflammatory response (IL-8 and TNFα), and enhanced CYP1A1 gene expression compared to air controls. The more compact spherical particles (representative of atmospherically aged particles) induced more early apoptosis and release of TNFα compared to the more fractal-like particles. These results suggest a contribution of morphology to the increased toxicity of aged combustion-derived particles.

15.
Toxicol Sci ; 189(1): 107-123, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35866636

RESUMO

Mutations in the alveolar epithelial-specific gene encoding for surfactant protein C (SP-C) are linked to pulmonary disease. Ozone (O3) is a ubiquitous pollutant known to exacerbate stress through oxidative injury and inflammation. To comprehend the structural, functional, and immunological impact of single and repeated O3 exposure, SP-CWT and surfactant protein-C I73T mutant (SP-CI73T) mice were exposed to air or O3 (0.8 ppm, 3 h, up to ×4 consecutive days). O3 was associated with mitochondrial and autophagic activation (PINK1, LC3B, and p62), focal remodeling, and inflammation localized at the terminal bronchiole-to-alveolar junctions. Histological damage was exacerbated by repeated exposure. Single O3 challenge resulted in transient elastin fiber loss, whereas repeated exposure resulted in marked increases in elastance in SP-CI73T mice. Flow cytometric analysis revealed increases in classical monocyte and monocyte-derived macrophages recruitment in conditions of repeated exposure, which peaked earlier (24 h) in SP-CI73T mice. Immunohistochemical analysis also showed clustering of Arg-1+ and CD206+ activated cells within regions of remodeled lung. Lymphoid cell analysis identified CX3CR1-B220+ B cells accumulating after single (24/72 h). Repeated exposure produces a switch in the phenotype of these B cells CX3CR1+ (72 h) only in SP-CWT mice. SP-CI73T mutants also displayed depletion in NK1.1+ NKp46+ natural killer cells in lung, as well as bone marrow, blood, and spleen. These results illustrate the cumulative impact of O3 on lung structure and function in healthy lung, and aberrant myeloid and lymphoid recruitment in SP-C mutants responding to challenge. Together, this work highlights the significance of modeling environmental exposure across the spectrum of genetic susceptibility, consistent with human disease.


Assuntos
Pulmão , Ozônio , Animais , Humanos , Inflamação/patologia , Pulmão/patologia , Macrófagos , Camundongos , Ozônio/toxicidade , Tensoativos
16.
J Pharmacol Exp Ther ; 382(2): 167-180, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35688478

RESUMO

Understanding the pharmacogenomics of opioid metabolism and behavior is vital to therapeutic success, as mutations can dramatically alter therapeutic efficacy and addiction liability. We found robust, sex-dependent BALB/c substrain differences in oxycodone behaviors and whole brain concentration of oxycodone metabolites. BALB/cJ females showed robust state-dependent oxycodone reward learning as measured via conditioned place preference when compared with the closely related BALB/cByJ substrain. Accordingly, BALB/cJ females also showed a robust increase in brain concentration of the inactive metabolite noroxycodone and the active metabolite oxymorphone compared with BALB/cByJ mice. Oxymorphone is a highly potent, full agonist at the mu opioid receptor that could enhance drug-induced interoception and state-dependent oxycodone reward learning. Quantitative trait locus (QTL) mapping in a BALB/c F2 reduced complexity cross revealed one major QTL on chromosome 15 underlying brain oxymorphone concentration that explained 32% of the female variance. BALB/cJ and BALB/cByJ differ by fewer than 10,000 variants, which can greatly facilitate candidate gene/variant identification. Hippocampal and striatal cis-expression QTL (eQTL) and exon-level eQTL analysis identified Zhx2, a candidate gene coding for a transcriptional repressor with a private BALB/cJ retroviral insertion that reduces Zhx2 expression and sex-dependent dysregulation of cytochrome P450 enzymes. Whole brain proteomics corroborated the Zhx2 eQTL and identified upregulated CYP2D11 that could increase brain oxymorphone in BALB/cJ females. To summarize, Zhx2 is a highly promising candidate gene underlying brain oxycodone metabolite levels. Future studies will validate Zhx2 and its site of action using reciprocal gene editing and tissue-specific viral manipulations in BALB/c substrains. SIGNIFICANCE STATEMENT: Our findings show that genetic variation can result in sex-specific alterations in whole brain concentration of a bioactive opioid metabolite after oxycodone administration, reinforcing the need for sex as a biological factor in pharmacogenomic studies. The cooccurrence of female-specific increased oxymorphone and state-dependent reward learning suggests that this minor yet potent and efficacious metabolite of oxycodone could increase opioid interoception and drug-cue associative learning of opioid reward, which has implications for cue-induced relapse of drug-seeking behavior and for precision pharmacogenetics.


Assuntos
Encéfalo , Proteínas de Homeodomínio , Oxicodona , Oximorfona , Analgésicos Opioides/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Feminino , Proteínas de Homeodomínio/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Oxicodona/farmacologia , Oximorfona/farmacologia , Recompensa
17.
ASAIO J ; 68(9): 1204-1210, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34799526

RESUMO

Patients with severe, COVID-related multi-organ failure often require extracorporeal life support (ECLS) such as extracorporeal membrane oxygenation (ECMO) or continuous renal replacement therapy (CRRT). An ECLS can alter drug exposure via multiple mechanisms. Remdesivir (RDV) and its active metabolite GS-441524 are likely to interact with ECLS circuits, resulting in lower than expected exposures. We evaluated circuit-drug interactions in closed loop, ex vivo ECMO and CRRT circuits. We found that mean (standard deviation) recovery of RDV at 6 hours after dosing was low in both the ECMO (33.3% [2.0]) and CRRT (3.5% [0.4]) circuits. This drug loss appears to be due primarily to drug adsorption by the circuit materials and potentially due to metabolism in the blood. GS-441524 recovery at 6 hours was high in the ECMO circuit 75.8% (16.5); however, was not detectable at 6 hours in the CRRT circuit. Loss in the CRRT circuit appears to be due primarily to efficient hemodiafiltration. The extent of loss for both molecules, especially in CRRT, suggests that in patients supported with ECMO and CRRT, RDV dosing adjustments are needed.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Oxigenação por Membrana Extracorpórea , Adenosina/análogos & derivados , Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , COVID-19/terapia , Oxigenação por Membrana Extracorpórea/métodos , Humanos , Terapia de Substituição Renal/métodos
18.
ACS Chem Biol ; 16(9): 1654-1662, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34423964

RESUMO

Marine tunicates produce defensive amino-acid-derived metabolites, including 2-(3,5-diiodo-4-methoxyphenyl)ethan-1-amine (DIMTA), but their mechanisms of action are rarely known. Using an assay-guided approach, we found that out of the many different sensory cells in the mouse dorsal root ganglion (DRG), DIMTA selectively affected low-threshold cold thermosensors. Whole-cell electrophysiology experiments using DRG cells, channels expressed in Xenopus oocytes, and human cell lines revealed that DIMTA blocks several potassium channels, reducing the magnitude of the afterhyperpolarization and increasing the baseline intracellular calcium concentration [Ca2+]i of low-threshold cold thermosensors. When injected into mice, DIMTA increased the threshold of cold sensation by >3 °C. DIMTA may thus serve as a lead in the further design of compounds that inhibit problems in the cold-sensory system, such as cold allodynia and other neuropathic pain conditions.


Assuntos
Aminas/metabolismo , Canais de Cálcio/metabolismo , Células Receptoras Sensoriais/metabolismo , Aminas/administração & dosagem , Animais , Cálcio/metabolismo , Gânglios Espinais/metabolismo , Masculino , Camundongos , Técnicas de Patch-Clamp , Transdução de Sinais , Sensação Térmica/fisiologia , Urocordados , Vertebrados
19.
Mol Pharmacol ; 100(3): 295-307, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34290137

RESUMO

Prior studies revealed increased expression of the transient receptor potential vanilloid-3 (TRPV3) ion channel after wood smoke particulate matter (WSPM) treatment of human bronchial epithelial cells (HBECs). TRPV3 attenuated pathologic endoplasmic reticulum stress and cytotoxicity mediated by transient receptor potential ankyrin-1. Here, the basis for how TRPV3 expression is regulated by cell injury and the effects this has on HBEC physiology and WSPM-induced airway remodeling in mice was investigated. TRPV3 mRNA was rapidly increased in HBECs treated with WSPM and after monolayer damage caused by tryptic disruption, scratch wounding, and cell passaging. TRPV3 mRNA abundance varied with time, and stimulated expression occurred independent of new protein synthesis. Overexpression of TRPV3 in HBECs reduced cell migration and wound repair while enhancing cell adhesion. This phenotype correlated with disrupted mRNA expression of ligands of the epidermal growth factor, tumor growth factor-ß, and frizzled receptors. Accordingly, delayed wound repair by TRPV3 overexpressing cells was reversed by growth factor supplementation. In normal HBECs, TRPV3 upregulation was triggered by exogenous growth factor supplementation and was attenuated by inhibitors of growth factor receptor signaling. In mice, subacute oropharyngeal instillation with WSPM also promoted TRPV3 mRNA expression and epithelial remodeling, which was attenuated by TRPV3 antagonist pre- and cotreatment. This latter effect may be the consequence of antagonist-induced TRPV3 expression. These findings provide insights into the roles of TRPV3 in lung epithelial cells under basal and dynamic states, as well as highlight potential roles for TRPV3 ligands in modulating epithelial damage/repair. SIGNIFICANCE STATEMENT: Coordinated epithelial repair is essential for the maintenance of the airways, with deficiencies and exaggerated repair associated with adverse consequences to respiratory health. This study shows that TRPV3, an ion channel, is involved in coordinating repair through integrated repair signaling pathways, wherein TRPV3 expression is upregulated immediately after injury and returns to basal levels as cells complete the repair process. TRPV3 may be a novel target for understanding and/or treating conditions in which airway/lung epithelial repair is not properly orchestrated.


Assuntos
Células Epiteliais/metabolismo , Lesão Pulmonar/metabolismo , Material Particulado/efeitos adversos , Transdução de Sinais , Fumaça/efeitos adversos , Canais de Cátion TRPV/metabolismo , Remodelação das Vias Aéreas/genética , Animais , Brônquios/lesões , Brônquios/metabolismo , Brônquios/patologia , Adesão Celular/genética , Linhagem Celular , Movimento Celular/genética , Células Epiteliais/patologia , Receptores ErbB/antagonistas & inibidores , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Lesão Pulmonar/etiologia , Masculino , Camundongos Endogâmicos C57BL , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/genética , Transcriptoma , Fator de Crescimento Transformador beta/antagonistas & inibidores , Proteínas Wnt/antagonistas & inibidores , Madeira , Cicatrização/fisiologia
20.
ACS Chem Neurosci ; 12(14): 2693-2704, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34213884

RESUMO

In our efforts to discover new drugs to treat pain, we identified molleamines A-E (1-5) as major neuroactive components of the sea slug, Pleurobranchus forskalii, and their prey, Didemnum molle, tunicates. The chemical structures of molleamines were elucidated by spectroscopy and confirmed by the total synthesis of molleamines A (1) and C (3). Synthetic 3 completely blocked acetylcholine-induced calcium flux in peptidergic nociceptors (PNs) in the somatosensory nervous system. Compound 3 affected neither the α7 nAChR nor the muscarinic acetylcholine receptors in calcium flux assays. In addition to nociceptors, 3 partially blocked the acetylcholine-induced calcium flux in the sympathetic nervous system, including neurons from the superior cervical ganglion. Electrophysiology revealed a block of α3ß4 (mouse) and α6/α3ß4 (rat) nicotinic acetylcholine receptors (nAChRs), with IC50 values of 1.4 and 3.1 µM, respectively. Molleamine C (3) is a partial antagonist, reaching a maximum block of 76-82% of the acetylcholine signal and showing no partial agonist response. Molleamine C (3) may thus provide a lead compound for the development of neuroactive compounds with unique biological properties.


Assuntos
Receptores Nicotínicos , Urocordados , Animais , Aplysia , Camundongos , Antagonistas Nicotínicos/farmacologia , Nylons , Ratos , Receptor Nicotínico de Acetilcolina alfa7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA