Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Lancet Microbe ; 4(7): e506-e515, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37295446

RESUMO

BACKGROUND: Experimental data show that drug-resistance-conferring mutations are often associated with a decrease in the replicative fitness of bacteria in vitro, and that this fitness cost can be mitigated by compensatory mutations; however, the role of compensatory evolution in clinical settings is less clear. We assessed whether compensatory evolution was associated with increased transmission of rifampicin-resistant tuberculosis in Khayelitsha, Cape Town, South Africa. METHODS: We did a genomic epidemiological study by analysing available M tuberculosis isolates and their associated clinical data from individuals routinely diagnosed with rifampicin-resistant tuberculosis in primary care and hospitals in Khayelitsha, Cape Town, South Africa. Isolates were collected as part of a previous study. All individuals diagnosed with rifampicin-resistant tuberculosis and with linked biobanked specimens were included in this study. We applied whole-genome sequencing, Bayesian reconstruction of transmission trees, and phylogenetic multivariable regression analysis to identify individual and bacterial factors associated with the transmission of rifampicin-resistant M tuberculosis strains. FINDINGS: Between Jan 1, 2008, and Dec 31, 2017, 2161 individuals were diagnosed with multidrug-resistant or rifampicin-resistant tuberculosis in Khayelitsha, Cape Town, South Africa. Whole-genome sequences were available for 1168 (54%) unique individual M tuberculosis isolates. Compensatory evolution was associated with smear-positive pulmonary disease (adjusted odds ratio 1·49, 95% CI 1·08-2·06) and a higher number of drug-resistance-conferring mutations (incidence rate ratio 1·38, 95% CI 1·28-1·48). Compensatory evolution was also associated with increased transmission of rifampicin-resistant disease between individuals (adjusted odds ratio 1·55; 95% CI 1·13-2·12), independent of other patient and bacterial factors. INTERPRETATION: Our findings suggest that compensatory evolution enhances the in vivo fitness of drug-resistant M tuberculosis genotypes, both within and between patients, and that the in vitro replicative fitness of rifampicin-resistant M tuberculosis measured in the laboratory correlates with the bacterial fitness measured in clinical settings. These results emphasise the importance of enhancing surveillance and monitoring efforts to prevent the emergence of highly transmissible clones capable of rapidly accumulating new drug resistance mutations. This concern becomes especially crucial at present, because treatment regimens incorporating novel drugs are being implemented. FUNDING: Funding for this study was provided by a Swiss and South Africa joint research award (grant numbers 310030_188888, CRSII5_177163, and IZLSZ3_170834), the European Research Council (grant number 883582), and a Wellcome Trust fellowship (to HC; reference number 099818/Z/12/Z). ZS-D was funded through a PhD scholarship from the South African National Research Foundation and RMW was funded through the South African Medical Research Council.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Mycobacterium tuberculosis/genética , Rifampina/farmacologia , Rifampina/uso terapêutico , África do Sul/epidemiologia , Teorema de Bayes , Filogenia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/genética , Genômica
2.
Nat Commun ; 14(1): 1988, 2023 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-37031225

RESUMO

Multidrug-resistant tuberculosis (MDR-TB) is among the most frequent causes of death due to antimicrobial resistance. Although only 3% of global TB cases are MDR, geographical hotspots with up to 40% of MDR-TB have been observed in countries of the former Soviet Union. While the quality of TB control and patient-related factors are known contributors to such hotspots, the role of the pathogen remains unclear. Here we show that in the country of Georgia, a known hotspot of MDR-TB, MDR Mycobacterium tuberculosis strains of lineage 4 (L4) transmit less than their drug-susceptible counterparts, whereas most MDR strains of L2 suffer no such defect. Our findings further indicate that the high transmission fitness of these L2 strains results from epistatic interactions between the rifampicin resistance-conferring mutation RpoB S450L, compensatory mutations in the RNA polymerase, and other pre-existing genetic features of L2/Beijing clones that circulate in Georgia. We conclude that the transmission fitness of MDR M. tuberculosis strains is heterogeneous, but can be as high as drug-susceptible forms, and that such highly drug-resistant and transmissible strains contribute to the emergence and maintenance of hotspots of MDR-TB. As these strains successfully overcome the metabolic burden of drug resistance, and given the ongoing rollout of new treatment regimens against MDR-TB, proper surveillance should be implemented to prevent these strains from acquiring resistance to the additional drugs.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Mycobacterium tuberculosis/genética , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Mutação , Rifampina/farmacologia , Rifampina/uso terapêutico , Farmacorresistência Bacteriana Múltipla/genética , Testes de Sensibilidade Microbiana
3.
PLoS Pathog ; 19(4): e1010893, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37014917

RESUMO

In settings with high tuberculosis (TB) endemicity, distinct genotypes of the Mycobacterium tuberculosis complex (MTBC) often differ in prevalence. However, the factors leading to these differences remain poorly understood. Here we studied the MTBC population in Dar es Salaam, Tanzania over a six-year period, using 1,082 unique patient-derived MTBC whole-genome sequences (WGS) and associated clinical data. We show that the TB epidemic in Dar es Salaam is dominated by multiple MTBC genotypes introduced to Tanzania from different parts of the world during the last 300 years. The most common MTBC genotypes deriving from these introductions exhibited differences in transmission rates and in the duration of the infectious period, but little differences in overall fitness, as measured by the effective reproductive number. Moreover, measures of disease severity and bacterial load indicated no differences in virulence between these genotypes during active TB. Instead, the combination of an early introduction and a high transmission rate accounted for the high prevalence of L3.1.1, the most dominant MTBC genotype in this setting. Yet, a longer co-existence with the host population did not always result in a higher transmission rate, suggesting that distinct life-history traits have evolved in the different MTBC genotypes. Taken together, our results point to bacterial factors as important determinants of the TB epidemic in Dar es Salaam.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/genética , Tanzânia/epidemiologia , Tuberculose/epidemiologia , Genótipo , Virulência
4.
J Clin Microbiol ; 60(3): e0236221, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35170980

RESUMO

Treatment of multidrug-resistant or rifampicin-resistant tuberculosis (MDR/RR-TB), although improved in recent years with shorter, more tolerable regimens, remains largely standardized and based on limited drug susceptibility testing (DST). More individualized treatment with expanded DST access is likely to improve patient outcomes. To assess the potential of TB drug resistance prediction based on whole-genome sequencing (WGS) to provide more effective treatment regimens, we applied current South African treatment recommendations to a retrospective cohort of MDR/RR-TB patients from Khayelitsha, Cape Town. Routine DST and clinical data were used to retrospectively categorize patients into a recommended regimen, either a standardized short regimen or a longer individualized regimen. Potential regimen changes were then described with the addition of WGS-derived DST. WGS data were available for 1274 MDR/RR-TB patient treatment episodes across 2008 to 2017. Among 834 patients initially eligible for the shorter regimen, 385 (46%) may have benefited from reduced drug dosage or removing ineffective drugs when WGS data were considered. A further 187 (22%) patients may have benefited from more effective adjusted regimens. Among 440 patients initially eligible for a longer individualized regimen, 153 (35%) could have been switched to the short regimen. Overall, 305 (24%) patients had MDR/RR-TB with second-line TB drug resistance, where the availability of WGS-derived DST would have allowed more effective treatment individualization. These data suggest considerable benefits could accrue from routine access to WGS-derived resistance prediction. Advances in culture-free sequencing and expansion of the reference resistance mutation catalogue will increase the utility of WGS resistance prediction.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Estudos de Coortes , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/genética , Estudos Retrospectivos , Rifampina/farmacologia , Rifampina/uso terapêutico , África do Sul , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
5.
PLoS Comput Biol ; 18(1): e1009628, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35025869

RESUMO

Genome-wide association studies rely on the statistical inference of untyped variants, called imputation, to increase the coverage of genotyping arrays. However, the results are often suboptimal in populations underrepresented in existing reference panels and array designs, since the selected single nucleotide polymorphisms (SNPs) may fail to capture population-specific haplotype structures, hence the full extent of common genetic variation. Here, we propose to sequence the full genomes of a small subset of an underrepresented study cohort to inform the selection of population-specific add-on tag SNPs and to generate an internal population-specific imputation reference panel, such that the remaining array-genotyped cohort could be more accurately imputed. Using a Tanzania-based cohort as a proof-of-concept, we demonstrate the validity of our approach by showing improvements in imputation accuracy after the addition of our designed add-on tags to the base H3Africa array.


Assuntos
Genética Populacional , Estudo de Associação Genômica Ampla , Genótipo , Polimorfismo de Nucleotídeo Único/genética , Biologia Computacional/métodos , Genética Populacional/métodos , Genética Populacional/normas , Estudo de Associação Genômica Ampla/métodos , Estudo de Associação Genômica Ampla/normas , Humanos , Masculino , Tanzânia
6.
Lancet Microbe ; 2(11): e584-e593, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34766068

RESUMO

BACKGROUND: South Africa has a high burden of rifampicin-resistant tuberculosis (including multidrug-resistant [MDR] tuberculosis), with increasing rifampicin-monoresistant (RMR) tuberculosis over time. Resistance acquisition during first-line tuberculosis treatment could be a key contributor to this burden, and HIV might increase the risk of acquiring rifampicin resistance. We assessed whether HIV during previous treatment was associated with RMR tuberculosis and resistance acquisition among a retrospective cohort of patients with MDR or rifampicin-resistant tuberculosis. METHODS: In this retrospective cohort study, we included all patients routinely diagnosed with MDR or rifampicin-resistant tuberculosis in Khayelitsha, Cape Town, South Africa, between Jan 1, 2008, and Dec 31, 2017. Patient-level data were obtained from a prospective database, complemented by data on previous tuberculosis treatment and HIV from a provincial health data exchange. Stored MDR or rifampicin-resistant tuberculosis isolates from patients underwent whole-genome sequencing (WGS). WGS data were used to infer resistance acquisition versus transmission, by identifying genomically unique isolates (single nucleotide polymorphism threshold of five). Logistic regression analyses were used to assess factors associated with RMR tuberculosis and genomic uniqueness. FINDINGS: The cohort included 2041 patients diagnosed with MDR or rifampicin-resistant tuberculosis between Jan 1, 2008, and Dec 31, 2017; of those, 463 (22·7%) with RMR tuberculosis and 1354 (66·3%) with previous tuberculosis treatment. In previously treated patients, HIV positivity during previous tuberculosis treatment versus HIV negativity (adjusted odds ratio [OR] 2·07, 95% CI 1·35-3·18), and three or more previous tuberculosis treatment episodes versus one (1·96, 1·21-3·17) were associated with RMR tuberculosis. WGS data showing MDR or rifampicin-resistant tuberculosis were available for 1169 patients; 360 (30·8%) isolates were identified as unique. In previously treated patients, RMR tuberculosis versus MDR tuberculosis (adjusted OR 4·96, 3·40-7·23), HIV positivity during previous tuberculosis treatment (1·71, 1·03-2·84), and diagnosis in 2013-17 (1·42, 1·02-1·99) versus 2008-12, were associated with uniqueness. In previously treated patients with RMR tuberculosis, HIV positivity during previous treatment (adjusted OR 5·13, 1·61-16·32) was associated with uniqueness as was female sex (2·50 [1·18-5·26]). INTERPRETATION: These data suggest that HIV contributes to rifampicin-resistance acquisition during first-line tuberculosis treatment and that this might be driving increasing RMR tuberculosis over time. Large-scale prospective cohort studies are required to further quantify this risk. FUNDING: Swiss National Science Foundation, South African National Research Foundation, and Wellcome Trust.


Assuntos
Infecções por HIV , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Resistência a Medicamentos , Feminino , Infecções por HIV/tratamento farmacológico , Humanos , Epidemiologia Molecular , Mycobacterium tuberculosis/genética , Estudos Retrospectivos , Rifampina/farmacologia , África do Sul/epidemiologia , Tuberculose/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
7.
Antimicrob Agents Chemother ; 65(11): e0036421, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34460307

RESUMO

Rifampin monoresistance (RMR; rifampin resistance and isoniazid susceptibility) accounts for 38% of all rifampin-resistant tuberculosis (RR-TB) in South Africa and is increasing. We aimed to compare RMR-TB with multidrug-resistant TB (MDR-TB) in a setting with high TB, RR-TB, and HIV burdens. Patient-level clinical data and stored RR Mycobacterium tuberculosis isolates from 2008 to 2017 with available whole-genome sequencing (WGS) data were used to describe risk factors associated with RMR-TB and to compare RR-conferring mutations between RMR-TB and MDR-TB. A subset of isolates with particular RR-conferring mutations were subjected to semiquantitative rifampin phenotypic drug susceptibility testing. Among 2,041 routinely diagnosed RR-TB patients, 463 (22.7%) had RMR-TB. HIV-positive individuals (adjusted odds ratio [aOR], 1.4; 95% confidence interval [CI], 1.1 to 1.9) and diagnosis between 2013 and 2017 versus between 2008 and 2012 (aOR, 1.3; 95% CI, 1.1 to 1.7) were associated with RMR-TB. Among 1,119 (54.8%) patients with available WGS data showing RR-TB, significant differences in the distribution of rpoB RR-conferring mutations between RMR and MDR isolates were observed. Mutations associated with high-level RR were more commonly found among MDR isolates (811/889 [90.2%] versus 162/230 [70.4%] among RMR isolates; P < 0.0001). In particular, the rpoB L430P mutation, conferring low-level RR, was identified in 32/230 (13.9%) RMR isolates versus 10/889 (1.1%) in MDR isolates (P < 0.0001). Among 10 isolates with an rpoB L430P mutation, 7 were phenotypically susceptible using the critical concentration of 0.5 µg/ml (range, 0.125 to 1 µg/ml). The majority (215/230 [93.5%]) of RMR isolates showed susceptibility to all other TB drugs, highlighting the potential benefits of WGS for simplified treatment. These data suggest that the evolution of RMR-TB differs from MDR-TB with a potential contribution from HIV infection.


Assuntos
Infecções por HIV , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Antituberculosos/farmacologia , Infecções por HIV/tratamento farmacológico , Humanos , Isoniazida , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis/genética , Rifampina , África do Sul , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
9.
Nat Med ; 27(7): 1171-1177, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34031604

RESUMO

Multidrug-resistant tuberculosis (MDR-TB) accounts for one third of the annual deaths due to antimicrobial resistance1. Drug resistance-conferring mutations frequently cause fitness costs in bacteria2-5. Experimental work indicates that these drug resistance-related fitness costs might be mitigated by compensatory mutations6-10. However, the clinical relevance of compensatory evolution remains poorly understood. Here we show that, in the country of Georgia, during a 6-year nationwide study, 63% of MDR-TB was due to patient-to-patient transmission. Compensatory mutations and patient incarceration were independently associated with transmission. Furthermore, compensatory mutations were overrepresented among isolates from incarcerated individuals that also frequently spilled over into the non-incarcerated population. As a result, up to 31% of MDR-TB in Georgia was directly or indirectly linked to prisons. We conclude that prisons fuel the epidemic of MDR-TB in Georgia by acting as ecological drivers of fitness-compensated strains with high transmission potential.


Assuntos
Mycobacterium tuberculosis/patogenicidade , Prisões , Tuberculose Resistente a Múltiplos Medicamentos/transmissão , Antituberculosos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Mutação/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Prisioneiros , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
10.
F1000Res ; 10: 60, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33732436

RESUMO

Background: Lineage 1 (L1) and 3 (L3) are two lineages of the Mycobacterium tuberculosis complex (MTBC) causing tuberculosis (TB) in humans. L1 and L3 are prevalent around the rim of the Indian Ocean, the region that accounts for most of the world's new TB cases. Despite their relevance for this region, L1 and L3 remain understudied. Methods: We analyzed 2,938 L1 and 2,030 L3 whole genome sequences originating from 69 countries. We reconstructed the evolutionary history of these two lineages and identified genes under positive selection. Results: We found a strongly asymmetric pattern of migration from South Asia toward neighboring regions, highlighting the historical role of South Asia in the dispersion of L1 and L3. Moreover, we found that several genes were under positive selection, including genes involved in virulence and resistance to antibiotics. For L1 we identified signatures of local adaptation at the esxH locus, a gene coding for a secreted effector that targets the human endosomal sorting complex, and is included in several vaccine candidates. Conclusions: Our study highlights the importance of genetic diversity in the MTBC, and sheds new light on two of the most important MTBC lineages affecting humans.


Assuntos
Mycobacterium tuberculosis , Genótipo , Humanos , Oceano Índico , Mycobacterium tuberculosis/genética
11.
Int J Infect Dis ; 106: 13-22, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33667696

RESUMO

OBJECTIVE: To retrospectively investigate the cause of recurring tuberculosis (rcTB) among participants with pulmonary TB recruited from a prospective population-based study conducted between July 2012 and December 2015. METHODS: Mycobacterium tuberculosis complex isolates obtained from rcTB cases were characterized by standard mycobacterial genotyping tools, whole-genome sequencing, and phylogenetic analysis carried out to assess strain relatedness. RESULTS: The majority (58.3%, 21/36) of study participants with rcTB episodes had TB recurrence within 12 months post treatment. TB strains with isoniazid (INH) resistance were found in 19.4% (7/36) of participants at the primary episode, of which 29% (2/7) were also rifampicin-resistant. On TB recurrence, an INH-resistant strain was found in a larger proportion of participants, 27.8% (10/36), of which 40% (4/10) were MDR-TB strains. rcTB was attributed to relapse (same strain) in 75.0% (27/36) of participants and 25.0% (9/36) to re-infection. CONCLUSION: Our findings indicate that previous unresolved infectiondue to inadequate treatment, may be the major cause of rcTB.


Assuntos
Genômica , Habitação , Mycobacterium tuberculosis/genética , Tuberculose/epidemiologia , Tuberculose/transmissão , Adulto , Antituberculosos/uso terapêutico , Feminino , Gana/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Mycobacterium tuberculosis/fisiologia , Filogenia , Recidiva , Estudos Retrospectivos , Tuberculose/tratamento farmacológico , Sequenciamento Completo do Genoma
12.
Lancet Microbe ; 2(7): e320-e330, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35252901

RESUMO

BACKGROUND: Drug resistance threatens global tuberculosis control. We aimed to examine mortality in patients with tuberculosis from high-burden countries, according to concordance or discordance of results from drug susceptibility testing done locally and whole-genome sequencing (WGS). METHODS: In this multicentre cohort study, we collected pulmonary Mycobacterium tuberculosis isolates and clinical data from individuals with tuberculosis from antiretroviral therapy programmes and tuberculosis clinics in Côte d'Ivoire, Democratic Republic of the Congo, Kenya, Nigeria, Peru, South Africa, and Thailand, stratified by HIV status and drug resistance. Sites tested drug susceptibility using routinely available methods. WGS was done on Illumina HiSeq 2500 in the USA and Switzerland, and TBprofiler was used to analyse the genomes. We included individuals aged 16 years or older with pulmonary tuberculosis (bacteriologically confirmed or clinically diagnosed). We analysed mortality in multivariable logistic regression models adjusted for sex, age, HIV status, history of tuberculosis, and sputum positivity. FINDINGS: Between Sept 1, 2014, and July 4, 2016, of 634 patients included in our previous analysis, we included 582 patients with tuberculosis (median age 33 years [IQR 27-43], 225 [39%] women, and 247 [42%] HIV-positive). Based on WGS, 339 (58%) isolates were pan-susceptible, 35 (6%) monoresistant, 146 (25%) multidrug-resistant, and 24 (4%) pre-extensively drug-resistant (pre-XDR) or XDR. The analysis of mortality was based on 530 patients; 63 (12%) died and 77 (15%) patients received inappropriate treatment. Mortality ranged from 6% (18 of 310) in patients with pan-susceptible tuberculosis to 39% (nine of 23) in patients with pre-XDR or XDR tuberculosis. The adjusted odds ratio for mortality was 4·92 (95% CI 2·47-9·78) among undertreated patients, compared with appropriately treated patients. INTERPRETATION: In seven countries with a high burden of tuberculosis, we observed discrepancies between drug resistance patterns obtained locally and WGS. The underdiagnosis of drug resistance resulted in inappropriate treatment and higher mortality. WGS can provide accurate and detailed drug resistance information required to improve the outcomes of drug-resistant tuberculosis in high-burden settings. Our results support WHO's call for point-of-care tests based on WGS. FUNDING: National Institutes of Allergy and Infectious Diseases, Swiss National Science Foundation, and Swiss National Center for Mycobacteria.


Assuntos
Infecções por HIV , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose Pulmonar , Tuberculose , Adulto , Antituberculosos/farmacologia , Estudos de Coortes , Feminino , Infecções por HIV/tratamento farmacológico , Humanos , Masculino , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/genética , Tuberculose/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Pulmonar/tratamento farmacológico
13.
Open Res Eur ; 1: 100, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37645186

RESUMO

Background:  The bacteria that compose the Mycobacterium tuberculosis complex (MTBC) cause tuberculosis (TB) in humans and in different animals, including livestock. Much progress has been made in understanding the population structure of the human-adapted members of the MTBC by combining phylogenetics with genomics. Accompanying the discovery of new genetic diversity, a body of operational nomenclature has evolved to assist comparative and molecular epidemiological studies of human TB. By contrast, for the livestock-associated MTBC members, Mycobacterium bovis, M. caprae and M. orygis, there has been a lack of comprehensive nomenclature to accommodate new genetic diversity uncovered by emerging phylogenomic studies. We propose to fill this gap by putting forward a new nomenclature covering the main phylogenetic groups within M. bovis, M. caprae and M. orygis. Methods:  We gathered a total of 8,736 whole-genome sequences (WGS) from public sources and 39 newly sequenced strains, and selected a subset of 829 WGS, representative of the worldwide diversity of M. bovis, M. caprae and M. orygis. We used phylogenetics and genetic diversity patterns inferred from WGS to define groups. Results:  We propose to divide M. bovis, M. caprae and M. orygis in three main phylogenetic lineages, which we named La1, La2 and La3, respectively. Within La1, we identified several monophyletic groups, which we propose to classify into eight sublineages (La1.1-La1.8). These sublineages differed in geographic distribution, with some being geographically restricted and others globally widespread, suggesting different expansion abilities. To ease molecular characterization of these MTBC groups by the community, we provide phylogenetically informed, single nucleotide polymorphisms that can be used as barcodes for genotyping. These markers were implemented in KvarQ and TB-Profiler, which are platform-independent, open-source tools. Conclusions:  Our results contribute to an improved classification of the genetic diversity within the livestock-associated MTBC, which will benefit future molecular epidemiological and evolutionary studies.

14.
Antimicrob Agents Chemother ; 64(11)2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32868333

RESUMO

Mutations in the genes of the F420 signaling pathway of Mycobacterium tuberculosis complex, including dnn, fgd1, fbiA, fbiB, fbiC, and fbiD, can lead to delamanid resistance. We searched for such mutations among 129 M. tuberculosis strains from Asia, South America, and Africa using whole-genome sequencing; 70 (54%) strains had at least one mutation in one of the genes. For 10 strains with mutations, we determined the MIC of delamanid. We found one strain from a delamanid-naive patient carrying the natural polymorphism Tyr29del (ddn) that was associated with a critical delamanid MIC.


Assuntos
Mycobacterium tuberculosis , Preparações Farmacêuticas , Tuberculose Resistente a Múltiplos Medicamentos , África , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Ásia , Humanos , Testes de Sensibilidade Microbiana , Mutação/genética , Mycobacterium tuberculosis/genética , Nitroimidazóis , Oxazóis , América do Sul , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
15.
Antimicrob Agents Chemother ; 64(10)2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32718966

RESUMO

We analyzed 312 drug-resistant genomes of Mycobacterium tuberculosis isolates collected from HIV-coinfected and HIV-negative TB patients from nine countries with a high tuberculosis burden. We found that rifampicin-resistant M. tuberculosis strains isolated from HIV-coinfected patients carried disproportionally more resistance-conferring mutations in rpoB that are associated with a low fitness in the absence of the drug, suggesting these low-fitness rpoB variants can thrive in the context of reduced host immunity.


Assuntos
Infecções por HIV , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Antituberculosos , Proteínas de Bactérias/genética , RNA Polimerases Dirigidas por DNA/genética , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Humanos , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis/genética , Rifampina
16.
Front Med (Lausanne) ; 7: 161, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32509791

RESUMO

Whole genome sequencing (WGS) is progressively being used to investigate the transmission dynamics of Mycobacterium tuberculosis complex (MTBC). We used WGS analysis to resolve traditional genotype clusters and explored the spatial distribution of confirmed recent transmission clusters. Bacterial genomes from a total of 452 MTBC isolates belonging to large traditional clusters from a population-based study spanning July 2012 and December 2015 were obtained through short read next-generation sequencing using the illumina HiSeq2500 platform. We performed clustering and spatial analysis using specified R packages and ArcGIS. Of the 452 traditional genotype clustered genomes, 314 (69.5%) were confirmed clusters with a median cluster size of 7.5 genomes and an interquartile range of 4-12. Recent tuberculosis (TB) transmission was estimated as 24.7%. We confirmed the wide spread of a Cameroon sub-lineage clone with a cluster size of 78 genomes predominantly from the Ablekuma sub-district of Accra metropolis. More importantly, we identified a recent transmission cluster associated with isoniazid resistance belonging to the Ghana sub-lineage of lineage 4. WGS was useful in detecting unsuspected outbreaks; hence, we recommend its use not only as a research tool but as a surveillance tool to aid in providing the necessary guided steps to track, monitor, and control TB.

17.
Mol Biol Evol ; 37(1): 195-207, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31532481

RESUMO

Fluoroquinolones (FQ) form the backbone in experimental treatment regimens against drug-susceptible tuberculosis. However, little is known on whether the genetic variation present in natural populations of Mycobacterium tuberculosis (Mtb) affects the evolution of FQ-resistance (FQ-R). To investigate this question, we used nine genetically distinct drug-susceptible clinical isolates of Mtb and measured their frequency of resistance to the FQ ofloxacin (OFX) in vitro. We found that the Mtb genetic background led to differences in the frequency of OFX-resistance (OFX-R) that spanned two orders of magnitude and substantially modulated the observed mutational profiles for OFX-R. Further, in vitro assays showed that the genetic background also influenced the minimum inhibitory concentration and the fitness effect conferred by a given OFX-R mutation. To test the clinical relevance of our in vitro work, we surveyed the mutational profile for FQ-R in publicly available genomic sequences from clinical Mtb isolates, and found substantial Mtb lineage-dependent variability. Comparison of the clinical and the in vitro mutational profiles for FQ-R showed that 51% and 39% of the variability in the clinical frequency of FQ-R gyrA mutation events in Lineage 2 and Lineage 4 strains, respectively, can be attributed to how Mtb evolves FQ-R in vitro. As the Mtb genetic background strongly influenced the evolution of FQ-R in vitro, we conclude that the genetic background of Mtb also impacts the evolution of FQ-R in the clinic.


Assuntos
Antibacterianos , Evolução Biológica , Farmacorresistência Bacteriana/genética , Patrimônio Genético , Mycobacterium tuberculosis/genética , Ofloxacino , Genoma Bacteriano , Taxa de Mutação
18.
PLoS One ; 14(4): e0206334, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30978186

RESUMO

BACKGROUND: Human tuberculosis (TB) is caused by seven phylogenetic lineages of the Mycobacterium tuberculosis complex (MTBC), Lineage 1-7. Recent advances in rapid genotyping of MTBC based on single nucleotide polymorphisms (SNP), allow for phylogenetically robust strain classification, paving the way for defining genotype-phenotype relationships in clinical settings. Such studies have revealed that, in addition to host and environmental factors, strain variation in the MTBC influences the outcome of TB infection and disease. In Tanzania, such molecular epidemiological studies of TB however are scarce in spite of a high TB burden. METHODS AND FINDINGS: Here we used SNP-typing to characterize a nationwide collection of 2,039 MTBC clinical isolates representative of 1.6% of all new and retreatment TB cases notified in Tanzania during 2012 and 2013. Four lineages, namely Lineage 1-4 were identified within the study population. The distribution and frequency of these lineages varied across regions but overall, Lineage 4 was the most frequent (n = 866, 42.5%), followed by Lineage 3 (n = 681, 33.4%) and 1 (n = 336, 16.5%), with Lineage 2 being the least frequent (n = 92, 4.5%). We found Lineage 2 to be independently associated with female sex (adjusted odds ratio [aOR] 2.14; 95% confidence interval [95% CI] 1.31 - 3.50, p = 0.002) and retreatment cases (aOR 1.67; 95% CI 0.95 - 2.84, p = 0. 065) in the study population. We found no associations between MTBC lineage and patient age or HIV status. Our sublineage typing based on spacer oligotyping on a subset of Lineage 1, 3 and 4 strains revealed the presence of mainly EAI, CAS and LAM families. Finally, we detected low levels of multidrug resistant isolates among a subset of 144 retreatment cases. CONCLUSIONS: This study provides novel insights into the MTBC lineages and the possible influence of pathogen-related factors on the TB epidemic in Tanzania.


Assuntos
Mycobacterium tuberculosis/genética , Filogenia , Polimorfismo de Nucleotídeo Único , Tuberculose Pulmonar/genética , Adolescente , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tanzânia/epidemiologia , Tuberculose Pulmonar/epidemiologia , Tuberculose Pulmonar/microbiologia
19.
PLoS One ; 14(3): e0214088, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30908506

RESUMO

The Mycobacterium tuberculosis complex (MTBC) causes tuberculosis (TB) in humans and various other mammals. The human-adapted members of the MTBC comprise seven phylogenetic lineages that differ in their geographical distribution. There is growing evidence that this phylogeographic diversity modulates the outcome of TB infection and disease. For decades, TB research and development has focused on the two canonical MTBC laboratory strains H37Rv and Erdman, both of which belong to Lineage 4. Relying on only a few laboratory-adapted strains can be misleading as study results might not be directly transferrable to clinical settings where patients are infected with a diverse array of strains, including drug-resistant variants. Here, we argue for the need to expand TB research and development by incorporating the phylogenetic diversity of the MTBC. To facilitate such work, we have assembled a group of 20 genetically well-characterized clinical strains representing the seven known human-adapted MTBC lineages. With the "MTBC clinical strains reference set" we aim to provide a standardized resource for the TB community. We hope it will enable more direct comparisons between studies that explore the physiology of MTBC beyond the laboratory strains used thus far. We anticipate that detailed phenotypic analyses of this reference strain set will increase our understanding of TB biology and assist in the development of new control tools that are broadly effective.


Assuntos
Variação Genética , Mycobacterium tuberculosis/genética , Humanos , Mycobacterium tuberculosis/isolamento & purificação , Filogenia , Filogeografia
20.
Lancet Infect Dis ; 19(3): 298-307, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30744962

RESUMO

BACKGROUND: Drug resistance is a challenge for the global control of tuberculosis. We examined mortality in patients with tuberculosis from high-burden countries, according to concordance or discordance of results from drug susceptibility testing done locally and in a reference laboratory. METHODS: This multicentre cohort study was done in Côte d'Ivoire, Democratic Republic of the Congo, Kenya, Nigeria, South Africa, Peru, and Thailand. We collected Mycobacterium tuberculosis isolates and clinical data from adult patients aged 16 years or older. Patients were stratified by HIV status and tuberculosis drug resistance. Molecular or phenotypic drug susceptibility testing was done locally and at the Swiss National Center for Mycobacteria, Zurich, Switzerland. We examined mortality during treatment according to drug susceptibility test results and treatment adequacy in multivariable logistic regression models adjusting for sex, age, sputum microscopy, and HIV status. FINDINGS: We obtained M tuberculosis isolates from 871 patients diagnosed between 2013 and 2016. After exclusion of 237 patients, 634 patients with tuberculosis were included in this analysis; the median age was 33·2 years (IQR 26·9-42·5), 239 (38%) were women, 272 (43%) were HIV-positive, and 69 (11%) patients died. Based on the reference laboratory drug susceptibility test, 394 (62%) strains were pan-susceptible, 45 (7%) monoresistant, 163 (26%) multidrug-resistant (MDR), and 30 (5%) had pre-extensively or extensively drug resistant (pre-XDR or XDR) tuberculosis. Results of reference and local laboratories were concordant for 513 (81%) of 634 patients and discordant for 121 (19%) of 634. Overall, sensitivity to detect any resistance was 90·8% (95% CI 86·5-94·2) and specificity 84·3% (80·3-87·7). Mortality ranged from 6% (20 of 336) in patients with pan-susceptible tuberculosis treated according to WHO guidelines to 57% (eight of 14) in patients with resistant strains who were under-treated. In logistic regression models, compared with concordant drug susceptibility test results, the adjusted odds ratio of death was 7·33 (95% CI 2·70-19·95) for patients with discordant results potentially leading to under-treatment. INTERPRETATION: Inaccurate drug susceptibility testing by comparison with a reference standard leads to under-treatment of drug-resistant tuberculosis and increased mortality. Rapid molecular drug susceptibility test of first-line and second-line drugs at diagnosis is required to improve outcomes in patients with MDR tuberculosis and pre-XDR or XDR tuberculosis. FUNDING: National Institutes of Allergy and Infectious Diseases, Swiss National Science Foundation, Swiss National Center for Mycobacteria.


Assuntos
Erros de Diagnóstico , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana/métodos , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Tuberculose/mortalidade , Adolescente , Adulto , África , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mycobacterium tuberculosis/isolamento & purificação , Peru , Sensibilidade e Especificidade , Análise de Sobrevida , Tailândia , Tuberculose/microbiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA