Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Circ Res ; 134(10): e93-e111, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38563147

RESUMO

BACKGROUND: Endothelial activation promotes the release of procoagulant extracellular vesicles and inflammatory mediators from specialized storage granules. Endothelial membrane exocytosis is controlled by phosphorylation. We hypothesized that the absence of PTP1B (protein tyrosine phosphatase 1B) in endothelial cells promotes venous thromboinflammation by triggering endothelial membrane fusion and exocytosis. METHODS: Mice with inducible endothelial deletion of PTP1B (End.PTP1B-KO) underwent inferior vena cava ligation to induce stenosis and venous thrombosis. Primary endothelial cells from transgenic mice and human umbilical vein endothelial cells were used for mechanistic studies. RESULTS: Vascular ultrasound and histology showed significantly larger venous thrombi containing higher numbers of Ly6G (lymphocyte antigen 6 family member G)-positive neutrophils in mice with endothelial PTP1B deletion, and intravital microscopy confirmed the more pronounced neutrophil recruitment following inferior vena cava ligation. RT2 PCR profiler array and immunocytochemistry analysis revealed increased endothelial activation and adhesion molecule expression in primary End.PTP1B-KO endothelial cells, including CD62P (P-selectin) and VWF (von Willebrand factor). Pretreatment with the NF-κB (nuclear factor kappa B) kinase inhibitor BAY11-7082, antibodies neutralizing CD162 (P-selectin glycoprotein ligand-1) or VWF, or arginylglycylaspartic acid integrin-blocking peptides abolished the neutrophil adhesion to End.PTP1B-KO endothelial cells in vitro. Circulating levels of annexin V+ procoagulant endothelial CD62E+ (E-selectin) and neutrophil (Ly6G+) extracellular vesicles were also elevated in End.PTP1B-KO mice after inferior vena cava ligation. Higher plasma MPO (myeloperoxidase) and Cit-H3 (citrullinated histone-3) levels and neutrophil elastase activity indicated neutrophil activation and extracellular trap formation. Infusion of End.PTP1B-KO extracellular vesicles into C57BL/6J wild-type mice most prominently enhanced the recruitment of endogenous neutrophils, and this response was blunted in VWF-deficient mice or by VWF-blocking antibodies. Reduced PTP1B binding and tyrosine dephosphorylation of SNAP23 (synaptosome-associated protein 23) resulting in increased VWF exocytosis and neutrophil adhesion were identified as mechanisms, all of which could be restored by NF-κB kinase inhibition using BAY11-7082. CONCLUSIONS: Our findings show that endothelial PTP1B deletion promotes venous thromboinflammation by enhancing SNAP23 phosphorylation, endothelial VWF exocytosis, and neutrophil recruitment.


Assuntos
Exocitose , Camundongos Knockout , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Trombose Venosa , Fator de von Willebrand , Animais , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/deficiência , Humanos , Camundongos , Fator de von Willebrand/metabolismo , Fator de von Willebrand/genética , Trombose Venosa/metabolismo , Trombose Venosa/genética , Trombose Venosa/patologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Inflamação/metabolismo , Inflamação/genética , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Células Endoteliais/metabolismo , Células Cultivadas , Veia Cava Inferior/metabolismo , Veia Cava Inferior/patologia , Masculino , Infiltração de Neutrófilos , NF-kappa B/metabolismo
2.
Front Immunol ; 14: 1275109, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022683

RESUMO

In biomedical research, germ-free and gnotobiotic mouse models enable the mechanistic investigation of microbiota-host interactions and their role on (patho)physiology. Throughout any gnotobiotic experiment, standardized and periodic microbiological testing of defined gnotobiotic housing conditions is a key requirement. Here, we review basic principles of germ-free isolator technology, the suitability of various sterilization methods, and the use of sterility testing methods to monitor germ-free mouse colonies. We also discuss their effectiveness and limitations, and share the experience with protocols used in our facility. In addition, possible sources of isolator contamination are discussed and an overview of reported contaminants is provided.


Assuntos
Pesquisa Biomédica , Infertilidade , Animais , Camundongos , Esterilização , Vida Livre de Germes
3.
Hamostaseologie ; 43(5): 319-320, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37857292

RESUMO

STANDARDIZED IN VITRO AND IN VIVO MODEL SYSTEMS TO SIMPLIFY COMPLEXITY-THAT'S HOW WE LEARN: The discovery of new target molecules and translational progress in the development and refinement of antithrombotic therapies as well as the improved treatment of bleeding disorders strongly relies on standardized ex vivo and in vivo models that closely resemble the respective human pathologies. The standardization of these models requires sound training in specialized hemostasis and thrombosis research laboratories as well as a consistent daily routine. In this theme issue of Hämostaseologie-Progress in Haemostasis, four review articles cover key models that have proven instrumental to gain mechanistic insights on thrombogenesis and hemostatic processes. In recent decades, these models have moved our field forward and enabled translation across scales, from cell-based research to isolated flow chamber systems, to mouse thrombosis models reflecting the pathologic situations as observed in patients, to large animal models.


Assuntos
Transtornos da Coagulação Sanguínea , Hemostáticos , Trombose , Animais , Camundongos , Humanos , Hemostasia
5.
Proc Natl Acad Sci U S A ; 120(40): e2215421120, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37756334

RESUMO

Externalized histones erupt from the nucleus as extracellular traps, are associated with several acute and chronic lung disorders, but their implications in the molecular pathogenesis of interstitial lung disease are incompletely defined. To investigate the role and molecular mechanisms of externalized histones within the immunologic networks of pulmonary fibrosis, we studied externalized histones in human and animal bronchoalveolar lavage (BAL) samples of lung fibrosis. Neutralizing anti-histone antibodies were administered in bleomycin-induced fibrosis of C57BL/6 J mice, and subsequent studies used conditional/constitutive knockout mouse strains for TGFß and IL-27 signaling along with isolated platelets and cultured macrophages. We found that externalized histones (citH3) were significantly (P < 0.01) increased in cell-free BAL fluids of patients with idiopathic pulmonary fibrosis (IPF; n = 29) as compared to healthy controls (n = 10). The pulmonary sources of externalized histones were Ly6G+CD11b+ neutrophils and nonhematopoietic cells after bleomycin in mice. Neutralizing monoclonal anti-histone H2A/H4 antibodies reduced the pulmonary collagen accumulation and hydroxyproline concentration. Histones activated platelets to release TGFß1, which signaled through the TGFbRI/TGFbRII receptor complex on LysM+ cells to antagonize macrophage-derived IL-27 production. TGFß1 evoked multiple downstream mechanisms in macrophages, including p38 MAPK, tristetraprolin, IL-10, and binding of SMAD3 to the IL-27 promotor regions. IL-27RA-deficient mice displayed more severe collagen depositions suggesting that intact IL-27 signaling limits fibrosis. In conclusion, externalized histones inactivate a safety switch of antifibrotic, macrophage-derived IL-27 by boosting platelet-derived TGFß1. Externalized histones are accessible to neutralizing antibodies for improving the severity of experimental pulmonary fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , Interleucina-27 , Humanos , Camundongos , Animais , Camundongos Endogâmicos C57BL , Histonas , Plaquetas , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/genética
8.
Nat Metab ; 5(7): 1174-1187, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37414930

RESUMO

The gut microbiota influences intestinal barrier integrity through mechanisms that are incompletely understood. Here we show that the commensal microbiota weakens the intestinal barrier by suppressing epithelial neuropilin-1 (NRP1) and Hedgehog (Hh) signaling. Microbial colonization of germ-free mice dampens signaling of the intestinal Hh pathway through epithelial Toll-like receptor (TLR)-2, resulting in decreased epithelial NRP1 protein levels. Following activation via TLR2/TLR6, epithelial NRP1, a positive-feedback regulator of Hh signaling, is lysosomally degraded. Conversely, elevated epithelial NRP1 levels in germ-free mice are associated with a strengthened gut barrier. Functionally, intestinal epithelial cell-specific Nrp1 deficiency (Nrp1ΔIEC) results in decreased Hh pathway activity and a weakened gut barrier. In addition, Nrp1ΔIEC mice have a reduced density of capillary networks in their small intestinal villus structures. Collectively, our results reveal a role for the commensal microbiota and epithelial NRP1 signaling in the regulation of intestinal barrier function through postnatal control of Hh signaling.


Assuntos
Proteínas Hedgehog , Neuropilina-1 , Camundongos , Animais , Neuropilina-1/metabolismo , Proteínas Hedgehog/metabolismo , Transdução de Sinais , Células Epiteliais/metabolismo , Bactérias/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-37460157

RESUMO

The gut microbiota is increasingly recognized as an actuating variable shaping vascular development and endothelial cell function in the intestinal mucosa but also affecting the microvasculature of remote organs. In the small intestine, colonization with gut microbiota and subsequent activation of innate immune pathways promotes the development of intricate capillary networks and lacteals, influencing the integrity of the gut-vascular barrier as well as nutrient uptake. Since the liver yields most of its blood supply via the portal circulation, the hepatic microcirculation steadily encounters microbiota-derived patterns and active signaling metabolites that induce changes in the organization of the liver sinusoidal endothelium, influencing immune zonation of sinusoids and impacting on metabolic processes. In addition, microbiota-derived signals may affect the vasculature of distant organ systems such as the brain and the eye microvasculature. In recent years, this gut-resident microbial ecosystem was revealed to contribute to the development of several vascular disease phenotypes.


Assuntos
Microbioma Gastrointestinal , Ecossistema , Fígado , Mucosa Intestinal , Microvasos
11.
Thromb Haemost ; 123(8): 808-839, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36913975

RESUMO

The Fourth Maastricht Consensus Conference on Thrombosis included the following themes. Theme 1: The "coagulome" as a critical driver of cardiovascular disease. Blood coagulation proteins also play divergent roles in biology and pathophysiology, related to specific organs, including brain, heart, bone marrow, and kidney. Four investigators shared their views on these organ-specific topics. Theme 2: Novel mechanisms of thrombosis. Mechanisms linking factor XII to fibrin, including their structural and physical properties, contribute to thrombosis, which is also affected by variation in microbiome status. Virus infection-associated coagulopathies perturb the hemostatic balance resulting in thrombosis and/or bleeding. Theme 3: How to limit bleeding risks: insights from translational studies. This theme included state-of-the-art methodology for exploring the contribution of genetic determinants of a bleeding diathesis; determination of polymorphisms in genes that control the rate of metabolism by the liver of P2Y12 inhibitors, to improve safety of antithrombotic therapy. Novel reversal agents for direct oral anticoagulants are discussed. Theme 4: Hemostasis in extracorporeal systems: the value and limitations of ex vivo models. Perfusion flow chamber and nanotechnology developments are developed for studying bleeding and thrombosis tendencies. Vascularized organoids are utilized for disease modeling and drug development studies. Strategies for tackling extracorporeal membrane oxygenation-associated coagulopathy are discussed. Theme 5: Clinical dilemmas in thrombosis and antithrombotic management. Plenary presentations addressed controversial areas, i.e., thrombophilia testing, thrombosis risk assessment in hemophilia, novel antiplatelet strategies, and clinically tested factor XI(a) inhibitors, both possibly with reduced bleeding risk. Finally, COVID-19-associated coagulopathy is revisited.


Assuntos
Transtornos da Coagulação Sanguínea , COVID-19 , Trombose , Humanos , Anticoagulantes/uso terapêutico , Coagulação Sanguínea , Hemostasia , Transtornos da Coagulação Sanguínea/tratamento farmacológico , Hemorragia/tratamento farmacológico
12.
Eur J Immunol ; 53(5): e2250339, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36959687

RESUMO

Polyphosphates are highly conserved, linear polymers of monophosphates that reside in all living cells. Bacteria produce long chains containing hundreds to thousands of phosphate units, which can interfere with host defense to infection. Here, we report that intratracheal long-chain polyphosphate administration to C57BL/6J mice resulted in the release of proinflammatory cytokines and influx of Ly6G+ polymorphonuclear neutrophils in the bronchoalveolar lavage fluid causing a disruption of the physiologic endothelial-epithelial small airway barrier and histologic signs of lung injury. Polyphosphate-induced effects were attenuated after neutrophil depletion in mice. In isolated murine neutrophils, long-chain polyphosphates modulated cytokine release induced by lipopolysaccharides (LPS) from Gram-negative bacteria or lipoteichoic acid from Gram-positive bacteria. In addition, long-chain polyphosphates induced immune evasive effects in human neutrophils. In detail, long-chain polyphosphates downregulated CD11b and curtailed the phagocytosis of Escherichia coli particles by neutrophils. Polyphosphates modulated the migration capacity by inducing CD62L shedding resulting in CD62Llow and CD11blow neutrophils. The release of IL-8 induced by LPS was also significantly reduced. Pharmacologic blockade of PI3K with wortmannin antagonized long-chain polyphosphate-induced effects on LPS-induced IL-8 release. In conclusion, polyphosphates govern immunomodulation in murine and human neutrophils, suggesting polyphosphates as a therapeutic target for bacterial infections to restore innate immune defense.


Assuntos
Lipopolissacarídeos , Neutrófilos , Humanos , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Polifosfatos/farmacologia , Interleucina-8 , Camundongos Endogâmicos C57BL , Citocinas , Líquido da Lavagem Broncoalveolar , Escherichia coli , Imunomodulação , Pulmão
13.
J Invest Dermatol ; 143(7): 1257-1267.e10, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36736996

RESUMO

Keratinocytes (KCs) form the outer epithelial barrier of the body, protecting against invading pathogens. Mice lacking the IL-17RA or both IL-17A and IL-17F develop spontaneous Staphylococcusaureus skin infections. We found a marked expansion of T17 cells, comprised of RORγt-expressing γδ T cells and T helper 17 cells in the skin-draining lymph nodes of these mice. Contradictory to previous suggestions, this expansion was not a result of a direct negative feedback loop because we found no expansion of T17 cells in mice lacking IL-17 signaling specifically in T cells. Instead, we found that the T17 expansion depended on the microbiota and was observed only when KCs were deficient for IL-17RA signaling. Indeed, mice that lack IL-17RA only in KCs showed an increased susceptibility to experimental epicutaneous infection with S. aureus together with an accumulation of IL-17A-producing γδ T cells. We conclude that deficiency of IL-17RA on KCs leads to microbiota dysbiosis in the skin, which triggers the expansion of IL-17A-producing T cells. Our data show that KCs are the primary target cells of IL-17A and IL-17F, coordinating the defense against microbial invaders in the skin.


Assuntos
Interleucina-17 , Staphylococcus aureus , Camundongos , Animais , Camundongos Knockout , Pele , Queratinócitos , Camundongos Endogâmicos C57BL
14.
Heliyon ; 8(11): e11740, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36439760

RESUMO

Cells of the innate immune system, including monocytes and neutrophils, are key players in the process of venous thrombosis. T lymphocytes have recently been implicated in venous thrombus resolution but the role of B lymphocytes in thrombosis is unknown. The present study was conducted to address this question using a mouse model of partial ligation of the inferior vena cava. Although only a very low number of B cells was found in the venous thrombi of wild-type mice, B cell-deficient JHT mutant mice developed larger venous thrombi than the wild-type controls. Consistent with enhanced thrombogenesis, increased neutrophil counts were found in the circulating blood and in the thrombi of B cell-deficient mice. One of the mechanisms by which neutrophils contribute to venous thrombosis is the formation of neutrophil extracellular traps (NETs). In agreement, higher quantities of NETs were observed in the thrombi of B cell-deficient mice. In vitro assays showed no difference in the NET building capacity of the isolated neutrophils between B cell-deficient and wild-type mice, indicating that the enhanced NET formation in the thrombi of B cell-deficient mice is attributable to the increased number of circulating neutrophils in these animals. Furthermore, increased concentration of the clot-stabilizing macromolecule fibrinogen was detected in the plasma of B cell-deficient mice. In conclusion, B cell-deficiency in mice indirectly promotes venous thrombosis by increasing neutrophil numbers and elevating fibrinogen levels.

15.
Front Immunol ; 13: 980733, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405694

RESUMO

Polyphosphates are linear polymers of inorganic phosphates that exist in all living cells and serve pleiotropic functions. Bacteria produce long-chain polyphosphates, which can interfere with host defense to infection. In contrast, short-chain polyphosphates are released from platelet dense granules and bind to the chemokine CXCL4. Here, we report that long-chain polyphosphates induced the release of CXCL4 from mouse bone marrow-derived macrophages and peritoneal macrophages in a dose-/time-dependent fashion resulting from an induction of CXCL4 mRNA. This polyphosphate effect was lost after pre-incubation with recombinant exopolyphosphatase (PPX) Fc fusion protein, demonstrating the potency of long chains over monophosphates and ambient cations. In detail, polyphosphate chains >70 inorganic phosphate residues were required to reliably induce CXCL4. Polyphosphates acted independently of the purinergic P2Y1 receptor and the MyD88/TRIF adaptors of Toll-like receptors. On the other hand, polyphosphates augmented LPS/MyD88-induced CXCL4 release, which was explained by intracellular signaling convergence on PI3K/Akt. Polyphosphates induced Akt phosphorylation at threonine-308. Pharmacologic blockade of PI3K (wortmannin, LY294002) antagonized polyphosphate-induced CXCL4 release from macrophages. Intratracheal polyphosphate administration to C57BL/6J mice caused histologic signs of lung injury, disruption of the endothelial-epithelial barrier, influx of Ly6G+ polymorphonuclear neutrophils, depletion of CD11c+SiglecF+ alveolar macrophages, and release of CXCL4. Long-chain polyphosphates synergized with the complement anaphylatoxin, C5a, which was partly explained by upregulation of C5aR1 on myeloid cells. C5aR1-/- mice were protected from polyphosphate-induced lung injury. C5a generation occurred in the lungs and bronchoalveolar lavage fluid (BALF) of polyphosphate-treated C57BL/6J mice. In conclusion, we demonstrate that polyphosphates govern immunomodulation in macrophages and promote acute lung injury.


Assuntos
Lesão Pulmonar Aguda , Complemento C5a , Camundongos , Animais , Complemento C5a/metabolismo , Anafilatoxinas/metabolismo , Fator Plaquetário 4/metabolismo , Polifosfatos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Camundongos Endogâmicos C57BL , Fatores Imunológicos , Bactérias/metabolismo
16.
Cancers (Basel) ; 14(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36291915

RESUMO

Treatment success of head and neck squamous cell carcinoma (HNSCC) is often hindered by cisplatin resistance. As inherent and acquired therapy resistance counteracts improvement in long-term survival, novel multi-targeting strategies triggering cancer cell apoptosis are urgently required. Here, we identify the vitamin D receptor (VDR) as being significantly overexpressed in tumors of HNSCC patients (n = 604; p = 0.0059), correlating with tumor differentiation (p = 0.0002), HPV status (p = 0.00026), and perineural invasion (p = 0.0087). The VDR, a member of the nuclear receptor superfamily, is activated by its ligand vitamin D (VitD) and analogs, triggering multiple cellular responses. As we found that the VDR was also upregulated in our cisplatin-resistant HNSCC models, we investigated its effect on overcoming cisplatin resistance. We discovered that VitD/cisplatin combinations synergistically killed even cisplatin-resistant cells at clinically achievable levels. Similar results were obtained for the clinically used VitD analog Maxacalcitol. Moreover, VitD/cisplatin combinations inhibited tumor cell migration by E-cadherin upregulation. Signaling pathway analyses revealed that VitD co-treatments triggered cancer cell death by increasing the expression of the pro-apoptotic BCL-2 family protein BIM. BIM's pro-apoptotic activity in HNSCC cells was confirmed by ectopic overexpression studies. Importantly, BIM expression is positively associated with HNSCC patients' (n = 539) prognosis, as high expression correlated with improved survival (p = 0.0111), improved therapy response (p = 0.0026), and remission (p = 0.004). Collectively, by identifying, for the first time, the VDR/BIM axis, we here provide a molecular rationale for the reported anti-cancer activity of VitD/analogs in combination therapies. Our data also suggest its exploitation as a potential strategy to overcome cisplatin resistance in HNSCC and other malignancies by inducing additional pro-apoptotic pathways.

19.
Mucosal Immunol ; 15(5): 927-939, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35672453

RESUMO

To understand functional duality of the complement system in host defense and lung injury, a more comprehensive view of its localized production in the lung, and the impact of age on complement production are essential. Here, we explored the expression of complement genes through computational analysis of preexisting single cell RNA sequencing data from lung transcriptomes of healthy young (3 months) and old C57BL/6 mice (24 months), and humans. We characterized the distribution of 48 complement genes. Across 28 distinct immune and non-immune cell types in mice, mesothelial cells expressed the greatest number of complement genes (e.g., C1ra, C2, C3), and regulators (e.g., Serping1, Cfh). C5 was abundant in type II alveolar epithelial cells and C1q in interstitial lung macrophages. There were only moderate differences in gene expression between young and old mice. Among 57 human lung cell types, mesothelial cells showed abundant complement expression. A few differences in gene  expression (e.g., FCN1, CFI, C6, C7) were also evident between mice and human lung cells. Our findings present a novel perspective on the expression patterns of complement genes in normal lungs. These findings highlight the potential functions of complement in tissue-specific homeostasis and immunity and may foster a mechanistic understanding of its role in lung health and disease.


Assuntos
Proteínas do Sistema Complemento , Pulmão , Animais , Proteínas do Sistema Complemento/genética , Proteínas do Sistema Complemento/metabolismo , Epitélio/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL
20.
Int J Mol Sci ; 23(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35742876

RESUMO

The biocompatibility of carrier nanomaterials in blood is largely hampered by their activating or inhibiting role on the clotting system, which in many cases prevents safe intravascular application. Here, we characterized an aqueous colloidal ethyl hydroxyethyl cellulose (EHEC) solution and tested its effect on ex vivo clot formation, platelet aggregation, and activation by thromboelastometry, aggregometry, and flow cytometry. We compared the impact of EHEC solution on platelet aggregation with biocompatible materials used in transfusion medicine (the plasma expanders gelatin polysuccinate and hydroxyethyl starch). We demonstrate that the EHEC solution, in contrast to commercial products exhibiting Newtonian flow behavior, resembles the shear-thinning behavior of human blood. Similar to established nanomaterials that are considered biocompatible when added to blood, the EHEC exposure of resting platelets in platelet-rich plasma does not enhance tissue thromboplastin- or ellagic acid-induced blood clotting, or platelet aggregation or activation, as measured by integrin αIIbß3 activation and P-selectin exposure. Furthermore, the addition of EHEC solution to adenosine diphosphate (ADP)-stimulated platelet-rich plasma does not affect the platelet aggregation induced by this agonist. Overall, our results suggest that EHEC may be suitable as a biocompatible carrier material in blood circulation and for applications in flow-dependent diagnostics.


Assuntos
Agregação Plaquetária , Polímeros , Difosfato de Adenosina/farmacologia , Plaquetas , Celulose/farmacologia , Humanos , Testes de Função Plaquetária/métodos , Polímeros/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA