Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Transl Psychiatry ; 11(1): 136, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608496

RESUMO

Schizophrenia is a complex and heterogenous disease that presents with abnormalities in glutamate signaling and altered immune and inflammatory signals. Genome-wide association studies have indicated specific genes and pathways that may contribute to schizophrenia. We assessed the impact of the functional missense variant SLC39A8 (ZIP8)-A391T (ZIP8A391T) on zinc transport, glutamate signaling, and the neuroinflammatory response. The ZIP8A391T mutation resulted in reduced zinc transport into the cell, suggesting a loss in the tight control of zinc in the synaptic cleft. Electrophysiological recordings from perturbed neurons revealed a significant reduction in NMDA- and AMPA-mediated spontaneous EPSCs (sEPSCs) and a reduction in GluN2A and GluA1/2/3 receptor surface expression. All phenotypes were rescued by re-expression of wild-type ZIP8 (ZIP8WT) or application of the membrane-impermeable zinc chelator ZX1. ZIP8 reduction also resulted in decreased BBB integrity, increased IL-6/IL-1ß protein expression, and increased NFκB following TNFα stimulation, indicating that ZIP8 loss-of-function may exacerbate immune and inflammatory signals. Together, our findings demonstrate that the A391T missense mutation results in alterations in glutamate and immune function and provide novel therapeutic targets relevant to schizophrenia.


Assuntos
Proteínas de Transporte de Cátions , Esquizofrenia , Alelos , Proteínas de Transporte de Cátions/genética , Estudo de Associação Genômica Ampla , Ácido Glutâmico , Humanos , Imunidade Inata , Receptores de Glutamato , Esquizofrenia/genética
2.
Transl Psychiatry ; 9(1): 151, 2019 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-31123247

RESUMO

Psychiatric disorders such as schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD) arise from complex interactions between genetic and environmental factors. Common genetic variants associated with multiple psychiatric disorders suggest that shared genetic architecture could contribute to divergent clinical syndromes. To evaluate shared transcriptional alterations across connected brain regions, Affymetrix microarrays were used to profile postmortem dorsolateral prefrontal cortex (DLPFC), hippocampus, and associative striatum from 19 well-matched tetrads of subjects with SCZ, BD, MDD, or unaffected controls. SCZ subjects showed a substantial burden of differentially expressed genes across all examined brain regions with the greatest effects in hippocampus, whereas BD and MDD showed less robust alterations. Pathway analysis of transcriptional profiles compared across diagnoses demonstrated commonly enriched pathways between all three disorders in hippocampus, significant overlap between SCZ and BD in DLPFC, but no significant overlap of enriched pathways between disorders in striatum. SCZ samples showed increased expression of transcripts associated with inflammation across all brain regions examined, which was not evident in BD or MDD, or in rat brain following chronic dosing with antipsychotic drugs. Several markers of inflammation were confirmed by RT-PCR in hippocampus, including S100A8/9, IL-6, MAFF, APOLD1, IFITM3, and BAG3. A cytokine ELISA panel showed significant increases in IL-2 and IL-12p70 protein content in hippocampal tissue collected from same SCZ subjects when compared to matched control subjects. These data suggest an overlapping subset of dysregulated pathways across psychiatric disorders; however, a widespread increase in inflammation appears to be a specific feature of the SCZ brain and is not likely to be attributable to chronic antipsychotic drug treatment.


Assuntos
Transtorno Bipolar , Corpo Estriado , Transtorno Depressivo Maior , Perfilação da Expressão Gênica , Hipocampo , Inflamação , Córtex Pré-Frontal , Esquizofrenia , Animais , Autopsia , Transtorno Bipolar/genética , Transtorno Bipolar/imunologia , Transtorno Bipolar/metabolismo , Corpo Estriado/imunologia , Corpo Estriado/metabolismo , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/imunologia , Transtorno Depressivo Maior/metabolismo , Hipocampo/imunologia , Hipocampo/metabolismo , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Masculino , Córtex Pré-Frontal/imunologia , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Sprague-Dawley , Esquizofrenia/genética , Esquizofrenia/imunologia , Esquizofrenia/metabolismo
3.
Biochemistry ; 55(51): 7073-7085, 2016 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-27958713

RESUMO

The rationale for using M1 selective muscarinic acetylcholine receptor activators for the treatment of cognitive impairment associated with psychiatric and neurodegenerative disease is well-established in the literature. Here, we investigate measurement of inositol phosphate accumulation, an end point immediately downstream of the M1 muscarinic acetylcholine receptor signaling cascade, as an in vivo biochemical readout for M1 muscarinic acetylcholine receptor activation. Five brain penetrant M1-subtype selective activators from three structurally distinct chemical series were pharmacologically profiled for functional activity in vitro using recombinant cell calcium mobilization and inositol phosphate assays, and a native tissue hippocampal slice electrophysiology assay, to show that all five compounds presented a positive allosteric modulator agonist profile, within a narrow range of potencies. In vivo characterization using an amphetamine-stimulated locomotor activity behavioral assay and the inositol phosphate accumulation biochemical assay demonstrated that the latter has utility for assessing functional potency of M1 activators. Efficacy measured by inositol phosphate accumulation in mouse striatum compared favorably to efficacy in reversing amphetamine-induced locomotor activity, suggesting that the inositol phosphate accumulation assay has utility for the evaluation of M1 muscarinic acetylcholine receptor activators in vivo. The benefits of this in vivo biochemical approach include a wide response window, interrogation of specific brain circuit activation, an ability to model responses in the context of brain exposure, an ability to rank order compounds based on in vivo efficacy, and minimization of animal use.


Assuntos
Encéfalo/efeitos dos fármacos , Cálcio/metabolismo , Fosfatos de Inositol/metabolismo , Agonistas Muscarínicos/farmacologia , Receptor Muscarínico M1/agonistas , Anfetamina/farmacologia , Animais , Encéfalo/metabolismo , Encéfalo/fisiologia , Células CHO , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/fisiologia , Cricetinae , Cricetulus , Dopaminérgicos/farmacologia , Relação Dose-Resposta a Droga , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/fisiologia , Humanos , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Agonistas Muscarínicos/classificação , Ratos Sprague-Dawley , Receptor Muscarínico M1/metabolismo
4.
J Med Chem ; 59(13): 6313-28, 2016 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-27275946

RESUMO

It is hypothesized that selective muscarinic M1 subtype activation could be a strategy to provide cognitive benefits to schizophrenia and Alzheimer's disease patients while minimizing the cholinergic side effects observed with nonselective muscarinic orthosteric agonists. Selective activation of M1 with a positive allosteric modulator (PAM) has emerged as a new approach to achieve selective M1 activation. This manuscript describes the development of a series of M1-selective pyridone and pyridine amides and their key pharmacophores. Compound 38 (PF-06767832) is a high quality M1 selective PAM that has well-aligned physicochemical properties, good brain penetration and pharmacokinetic properties. Extensive safety profiling suggested that despite being devoid of mAChR M2/M3 subtype activity, compound 38 still carries gastrointestinal and cardiovascular side effects. These data provide strong evidence that M1 activation contributes to the cholinergic liabilities that were previously attributed to activation of the M2 and M3 receptors.


Assuntos
Descoberta de Drogas , Ácidos Picolínicos/farmacologia , Receptor Muscarínico M1/agonistas , Tiazóis/farmacologia , Animais , Relação Dose-Resposta a Droga , Feminino , Masculino , Camundongos , Modelos Moleculares , Estrutura Molecular , Ácidos Picolínicos/síntese química , Ácidos Picolínicos/química , Ratos , Receptor Muscarínico M1/metabolismo , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/química
5.
Am J Hum Genet ; 98(4): 735-43, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27058446

RESUMO

Deficits in the basal ganglia pathways modulating cortical motor activity underlie both Parkinson disease (PD) and Huntington disease (HD). Phosphodiesterase 10A (PDE10A) is enriched in the striatum, and animal data suggest that it is a key regulator of this circuitry. Here, we report on germline PDE10A mutations in eight individuals from two families affected by a hyperkinetic movement disorder due to homozygous mutations c.320A>G (p.Tyr107Cys) and c.346G>C (p.Ala116Pro). Both mutations lead to a reduction in PDE10A levels in recombinant cellular systems, and critically, positron-emission-tomography (PET) studies with a specific PDE10A ligand confirmed that the p.Tyr107Cys variant also reduced striatal PDE10A levels in one of the affected individuals. A knock-in mouse model carrying the homologous p.Tyr97Cys variant had decreased striatal PDE10A and also displayed motor abnormalities. Striatal preparations from this animal had an impaired capacity to degrade cyclic adenosine monophosphate (cAMP) and a blunted pharmacological response to PDE10A inhibitors. These observations highlight the critical role of PDE10A in motor control across species.


Assuntos
Corpo Estriado/patologia , Hipercinese/genética , Mutação , Diester Fosfórico Hidrolases/genética , Alelos , Sequência de Aminoácidos , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica , Variação Genética , Células HEK293 , Humanos , Hipercinese/diagnóstico , Hipercinese/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Linhagem , Inibidores de Fosfodiesterase/metabolismo , Alinhamento de Sequência
6.
Bioorg Med Chem Lett ; 26(2): 650-655, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26631313

RESUMO

Selective activation of the M1 receptor via a positive allosteric modulator (PAM) is a new approach for the treatment of the cognitive impairments associated with schizophrenia and Alzheimer's disease. A novel series of azaindole amides and their key pharmacophore elements are described. The nitrogen of the azaindole core is a key design element as it forms an intramolecular hydrogen bond with the amide N-H thus reinforcing the bioactive conformation predicted by published SAR and our homology model. Representative compound 25 is a potent and selective M1 PAM that has well aligned physicochemical properties, adequate brain penetration and pharmacokinetic (PK) properties, and is active in vivo. These favorable properties indicate that this series possesses suitable qualities for further development and studies.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Amidas/química , Amidas/farmacologia , Indóis/química , Indóis/farmacologia , Receptor Muscarínico M1/metabolismo , Amidas/farmacocinética , Animais , Desenho de Fármacos , Humanos , Ligação de Hidrogênio , Indóis/farmacocinética , Camundongos , Simulação de Acoplamento Molecular , Receptor Muscarínico M1/agonistas
7.
Neurobiol Dis ; 77: 220-7, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25796564

RESUMO

Brain-derived neurotrophic factor (BDNF) signaling is integral to a range of neural functions, including synaptic plasticity and exhibits activity-dependent regulation of expression. As altered BDNF signaling has been implicated in multiple psychiatric diseases, here we report a quantitative reverse transcription polymerase chain reaction (RT-PCR) analysis of mRNAs encoding TrkB, total BDNF, and the four most abundant BDNF transcripts (I, IIc, IV, and VI) in postmortem tissue from matched tetrads of subjects with schizophrenia, bipolar disorder, or major depressive disorder (MDD) and healthy comparison subjects. In all three regions examined, dorsolateral prefrontal cortex (DLPFC), associative striatum and hippocampus, total BDNF mRNA levels did not differ in any disease state. In DLPFC, BDNF IIc was significantly lower in schizophrenia relative to healthy comparison subjects. In hippocampus, BDNF I, IIc, and VI were lower in subjects with both schizophrenia and bipolar disorder relative to comparison subjects. In striatum, TrkB mRNA was lower in bipolar disorder and MDD, while BDNF IIc was elevated in MDD, relative to comparison subjects. These data highlight potential alterations in BDNF signaling in the corticohippocampal circuit in schizophrenia, and within the striatum in mood disorders. Novel therapies aimed at improving BDNF-TrkB signaling may therefore have potential to impact on a range of psychiatric disorders.


Assuntos
Transtorno Bipolar/patologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Encéfalo/metabolismo , Transtorno Depressivo Maior/patologia , Glicoproteínas de Membrana/metabolismo , Proteínas Tirosina Quinases/metabolismo , Esquizofrenia/patologia , Adulto , Fator Neurotrófico Derivado do Encéfalo/genética , Corpo Estriado/metabolismo , Feminino , Hipocampo/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Córtex Pré-Frontal/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor trkB
8.
PLoS One ; 10(3): e0121744, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25786133

RESUMO

Increased protein levels of striatal-enriched tyrosine phosphatase (STEP) have recently been reported in postmortem schizophrenic cortex. The present study sought to replicate this finding in a separate cohort of postmortem samples and to extend observations to striatum, including subjects with bipolar disorder and major depressive disorder in the analysis. No statistically significant changes between disease and control subjects were found in STEP mRNA or protein levels in dorsolateral prefrontal cortex or associative striatum. Although samples were matched for several covariates, postmortem interval correlated negatively with STEP protein levels, emphasizing the importance of including these analyses in postmortem studies.


Assuntos
Transtorno Bipolar/enzimologia , Transtorno Depressivo Maior/enzimologia , Neostriado/enzimologia , Córtex Pré-Frontal/enzimologia , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Esquizofrenia/enzimologia , Autopsia , Transtorno Bipolar/genética , Estudos de Casos e Controles , Transtorno Depressivo Maior/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Tirosina Fosfatases não Receptoras/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Esquizofrenia/genética
9.
Cell Signal ; 26(2): 383-97, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24184653

RESUMO

3',5'-cyclic nucleotide phosphodiesterases (PDEs) are the only known enzymes to compartmentalize cAMP and cGMP, yet little is known about how PDEs are dynamically regulated across the lifespan. We mapped mRNA expression of all 21 PDE isoforms in the adult rat and mouse central nervous system (CNS) using quantitative polymerase chain reaction (qPCR) and in situ hybridization to assess conservation across species. We also compared PDE mRNA and protein in the brains of old (26 months) versus young (5 months) Sprague-Dawley rats, with select experiments replicated in old (9 months) versus young (2 months) BALB/cJ mice. We show that each PDE isoform exhibits a unique expression pattern across the brain that is highly conserved between rats, mice, and humans. PDE1B, PDE1C, PDE2A, PDE4A, PDE4D, PDE5A, PDE7A, PDE8A, PDE8B, PDE10A, and PDE11A showed an age-related increase or decrease in mRNA expression in at least 1 of the 4 brain regions examined (hippocampus, cortex, striatum, and cerebellum). In contrast, mRNA expression of PDE1A, PDE3A, PDE3B, PDE4B, PDE7A, PDE7B, and PDE9A did not change with age. Age-related increases in PDE11A4, PDE8A3, PDE8A4/5, and PDE1C1 protein expression were confirmed in hippocampus of old versus young rodents, as were age-related increases in PDE8A3 protein expression in the striatum. Age-related changes in PDE expression appear to have functional consequences as, relative to young rats, the hippocampi of old rats demonstrated strikingly decreased phosphorylation of GluR1, CaMKIIα, and CaMKIIß, decreased expression of the transmembrane AMPA regulatory proteins γ2 (a.k.a. stargazin) and γ8, and increased trimethylation of H3K27. Interestingly, expression of PDE11A4, PDE8A4/5, PDE8A3, and PDE1C1 correlate with these functional endpoints in young but not old rats, suggesting that aging is not only associated with a change in PDE expression but also a change in PDE compartmentalization.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Envelhecimento , Encéfalo/enzimologia , Regulação Enzimológica da Expressão Gênica , 3',5'-AMP Cíclico Fosfodiesterases/genética , Animais , Encéfalo/metabolismo , Cerebelo/enzimologia , Cerebelo/metabolismo , Córtex Cerebral/enzimologia , Córtex Cerebral/metabolismo , Corpo Estriado/enzimologia , Corpo Estriado/metabolismo , Hipocampo/enzimologia , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA