Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Inorganica Chim Acta ; 5712024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39399531

RESUMO

The O2-dependent carbon-carbon (C-C) bond cleavage reactions of the mononuclear Cu(II) chlorodiketonate complexes [(6-Ph2TPA)Cu(PhC(O)CClC(O)Ph)]ClO4 (1-ClO 4 ) and [(bpy)Cu(PhC(O)CClC(O)Ph)(ClO4)] (3-ClO 4 ) have been further examined in terms of their anion and water dependence. The bpy-ligated Cu(II) chlorodiketonate complex 3-ClO 4 is inherently more reactive with O2 than the 6-Ph2TPA-ligated analog 1-ClO 4 . Added chloride is needed to facilitate O2 reactivity for 1-ClO 4 but not for 3-ClO 4 at 25(1) °C. Evaluation of k obs for the reaction of 1-ClO 4 with O2 under pseudo first-order conditions as a function of the amount of added chloride ion produced saturation type behavior. The bpy-ligated 3-ClO 4 exhibits different behavior, with rate enhancement resulting from both the addition of chloride ion and water. Computational studies indicate that the presence of water lowers the barrier for O2 activation for 3-ClO 4 by ~12 kcal/mol whereas changing the anion from perchlorate to chloride has a smaller effect (lowering of the barrier by ~3 kcal/mol). Notably, the effect of water for 3-ClO 4 is of similar magnitude to the barrier-lowering chloride effect found in the O2 activation pathway for 1-ClO 4 . Thus, both systems involve lower energy O2 activation pathways available, albeit resulting from different ligand effects. Probing the effect of added benzoate anion, it was found that the chloro substituent in the diketonate moiety of 1-ClO 4 and 3-ClO 4 will undergo displacement upon treatment of each complex with tetrabutyl ammonium benzoate to give Cu(II) benzoyloxydiketonate complexes (4 and 5). Complexes 4 and 5 exhibit slow O2-dependent C-C cleavage in the presence of added chloride ion. These results are discussed in the context of the chemistry identified for various divalent metal chlorodiketonate complexes, which have relevance to catalytic systems and metalloenzymes that mediate O2-dependent C-C cleavage within diketonate substrates.

2.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 7): 746-750, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38974146

RESUMO

The mol-ecular structure of tricarbon-yl[η4-6-exo-(tri-phenyl-phosphino)cyclo-hepta-2,4-dien-1-one]iron(0) tetra-fluoro-borate di-chloro-methane hemisolvate, [Fe(C28H22O4)(CO)3]BF4·0.5CH2Cl2, as determined by single-crystal X-ray diffraction is reported. The two independent tricarbon-yl[η4-6-exo-(tri-phenyl-phosphino)cyclo-hepta-2,4-dien-1-one] iron(0) cations and their corresponding anions form dimers, which constitute the asymmetric unit of the structure parallel to the (100) plane. Solid-state stability within that asymmetric unit as well as between neighboring dimeric units is afforded by C-H⋯O and C-H⋯F hydrogen bonds and C-H⋯π and Y-X⋯π (Y = B, C; X = F, O) inter-actions, which yield diperiodic sheets and a three-dimensional extended network.

3.
Cryst Growth Des ; 24(14): 5883-5888, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39044733

RESUMO

Separations of azeotropic mixtures are typically carried out using energy-demanding processes (e.g., distillation). Here, we report the capacity of a self-assembled chlorinated boronic ester-based adduct to confine acetonitrile and benzene in channels upon crystallization. The solvent confinement occurs via a combination of hydrogen bonding and [π···π] interactions. Quantitative separation of benzene from an azeotropic 1:1 mixture of a benzene/acetonitrile (v/v), and methanol is achieved through crystallization with the chlorinated adduct by complementary [C-H···O] and [C-H···π] interactions. Inclusion behavior is rationalized by molecular modeling and crystallographic analysis. The chlorinated boronic ester adduct shows the potential of modularity via isosteric substitution for the separation of challenging chemical mixtures (e.g., azeotropes).

4.
Inorg Chem ; 63(19): 8674-8684, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38691843

RESUMO

Pertechnetate, the most stable form of the radionuclide 99Tc in aerobic aqueous systems, is a hazardous anion present in nuclear waste. Its high mobility in water makes the remediation of the anion challenging. In the past decade, significant effort has been placed into finding materials capable of adsorbing this species. Here, we present the synthesis and high-resolution crystal structure of the coordination polymer [Ag(2,4'-bipyridine)]NO3, which is capable of sequestering perrhenate─a pertechnetate surrogate─through anion exchange to form another new coordination polymer, [Ag(2,4'-bipyridine)]ReO4. Both the beginning and end structures were solved by single-crystal X-ray diffraction and the adsorption reaction was monitored through inductively coupled plasma-optical emission spectroscopy and UV-vis spectroscopy. The exchange reaction follows a pseudo-second-order mechanism and the maximum adsorption capacity is 764 mg ReO4/g [Ag(2,4'-bipyridine)]NO3, one of the highest recorded for a coordination polymer or metal-organic framework. A solvent-mediated recrystallization mechanism was determined by monitoring the ion-exchange reaction by scanning electron microscopy-energy-dispersive spectroscopy and powder X-ray diffraction.

5.
Nat Commun ; 15(1): 2121, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459047

RESUMO

Methods to separate molecules (e.g., petrochemicals) are exceedingly important industrially. A common approach for separations is to crystallize a host molecule that either provides an enforced covalent cavity (intrinsic cavity) or packs inefficiently (extrinsic cavity). Here we report a self-assembled molecule with a shape highly biased to completely enclose space and, thereby, pack efficiently yet hosts and allows for the separation of BTEX hydrocarbons (i.e., benzene, toluene, ethylbenzene, xylenes). The host is held together by N → B bonds and forms a diboron assembly with a shape that conforms to a T-shaped pentomino. A T-pentomino is a polyomino, which is a plane figure that tiles a plane without cavities and holes, and we show the molecule to crystallize into one of six polymorphic structures for T-pentomino tiling. The separations occur at mild conditions while rejecting similarly shaped aromatics such as xylene isomers, thiophene, and styrene. Our observation on the structure and tiling of the molecular T-pentomino allows us to develop a theory on how novel synthetic molecules that mimic the structures and packing of polyominoes can be synthesized and-quite counterintuitively-developed into a system of hosts with cavities used for selective and useful separations.

6.
Angew Chem Int Ed Engl ; 63(5): e202318475, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38078602

RESUMO

The development of reticular chemistry has enabled the construction of a large array of metal-organic frameworks (MOFs) with diverse net topologies and functions. However, dominating this class of materials are those built from discrete/finite secondary building units (SBUs), yet the designed synthesis of frameworks involving infinite rod-shaped SBUs remain underdeveloped. Here, by virtue of a global linker desymmetrization approach, we successfully targeted a novel Cu-MOF (Cu-ASY) incorporating infinite Cu-carboxylate rod SBUs with its structure determined by micro electron diffraction (MicroED) crystallography. Interestingly, the rod SBU can be simplified as a unique cylindric sphere packing qbe tubule made of [43 .62 ] tiles, which further connect the tritopic linkers to give a newly discovered 3,5-connected gfc net. Cu-ASY is a permanent ultramicroporous material featuring 1D channels with highly inert surfaces and shows a preferential adsorption of propane (C3 H8 ) over propene (C3 H6 ). The efficiency of C3 H8 selective Cu-ASY is validated by multicycle breakthrough experiments, giving C3 H6 productivity of 2.2 L/kg. Density functional theory (DFT) calculations reveal that C3 H8 molecules form multiple C-H⋅⋅⋅π and atypical C-H⋅⋅⋅ H-C van der Waals interactions with the inner nonpolar surfaces. This work therefore highlights the linker desymmetrization as an encouraging and intriguing strategy for achieving unique MOF structures and properties.

7.
J Am Chem Soc ; 145(49): 26890-26899, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38037882

RESUMO

Developing innovative porous solid sorbents for the capture and storage of toxic SO2 is crucial for energy-efficient transportation and subsequent processing. Nonetheless, the quest for high-performance SO2 sorbents, characterized by exceptional uptake capacity, minimal regeneration energy requirements, and outstanding recyclability under ambient conditions, remains a significant challenge. In this study, we present the design of a unique tertiary amine-embedded, pyrene-based quadripod-shaped ligand. This ligand is then assembled into a highly porous Zr-metal-organic framework (MOF) denoted as Zr-TPA, which exhibits a newly discovered 3,4,8-c woy net structure. Remarkably, our Zr-TPA MOF achieved an unprecedented SO2 sorption capacity of 22.7 mmol g-1 at 298 K and 1 bar, surpassing those of all previously reported solid sorbents. We elucidated the distinct SO2 sorption behaviors observed in isostructural Zr-TPA variants synthesized with different capping modulators (formate, acetate, benzoate, and trifluoroacetate, abbreviated as FA, HAc, BA, and TFA, respectively) through computational analyses. These analyses revealed unexpected SO2-induced modulator-node dynamics, resulting in transient chemisorption that enhanced synergistic SO2 sorption. Additionally, we conducted a proof-of-concept experiment demonstrating that the captured SO2 in Zr-TPA-FA can be converted in situ into a valuable pharmaceutical intermediate known as aryl N-aminosulfonamide, with a high yield and excellent recyclability. This highlights the potential of robust Zr-MOFs for storing SO2 in catalytic applications. In summary, this work contributes significantly to the development of efficient SO2 solid sorbents and advances our understanding of the molecular mechanisms underlying SO2 sorption in Zr-MOF materials.

8.
Acta Crystallogr E Crystallogr Commun ; 79(Pt 10): 958-961, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37817957

RESUMO

The formation and crystal structure of a co-crystal based upon 1,4-di-iodo-perchloro-benzene (C6I2Cl4) as the halogen-bond donor along with naphthalene (nap) as the acceptor is reported. The co-crystal [systematic name: 1,2,4,5-tetra-chloro-3,6-di-iodo-benzene-naphthalene, (C6I2Cl4)·(nap)] generates a chevron-like structure that is held together primarily by π-type halogen bonds (i.e. C-I⋯π contacts) between the components. In addition, C6I2Cl4 also inter-acts with the acceptor via C-Cl⋯π contacts that help stabilize the co-crystal. Within the solid, both aromatic components are found to engage in offset and homogeneous face-to-face π-π stacking inter-actions. Lastly, the halogen-bond donor C6I2Cl4 is found to engage with neighboring donors by both Type I chlorine-chlorine and Type II iodine-chlorine contacts, which generates an extended structure.

9.
Inorg Chem ; 62(37): 15173-15179, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37669231

RESUMO

The deoxygenation of environmental pollutants CO2 and NO2- to form value-added products is reported. CO2 reduction with subsequent CO release and NO2- conversion to NO are achieved via the starting complex Fe(PPhPDI)Cl2 (1). 1 contains the redox-active pyridinediimine (PDI) ligand with a hemilabile phosphine located in the secondary coordination sphere. 1 was reduced with SmI2 under a CO2 atmosphere to form the direduced monocarbonyl Fe(PPhPDI)(CO) (2). Subsequent CO release was achieved via oxidation of 2 using the NOx- source, NO2-. The resulting [Fe(PPhPDI)(NO)]+ (3) mononitrosyl iron complex (MNIC) is formed as the exclusive reduction product due to the hemilabile phosphine. 3 was investigated computationally to be characterized as {FeNO}7, an unusual intermediate-spin Fe(III) coupled to triplet NO- and a singly reduced PDI ligand.

10.
Chem Sci ; 14(29): 7867-7874, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37502328

RESUMO

We report unprecedented photochemistry for the diamidocarbene 1. Described within are the double cyclopropanation of 1-bromonaphthalene, the double addition to pyridine, and remarkably, the insertion into the unactivated sp3 C-H bonds of cyclohexane, tetramethylsilane, and n-pentane to give compounds 2-6, respectively. All compounds have been fully characterized, and the solid state structure of 4 was obtained using single crystal electron diffraction.

11.
Angew Chem Int Ed Engl ; 62(33): e202306198, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37369627

RESUMO

Achieving substantial anisotropic thermal expansion (TE) in solid-state materials is challenging as most materials undergo volumetric expansion upon heating. Here, we describe colossal, anisotropic TE in crystals of an organic compound functionalized with two azo groups. Interestingly, the material exhibits distinct and switchable TE behaviors within different temperature regions. At high temperature, two-dimensional, area zero TE and colossal, positive linear TE (α=211 MK-1 ) are attained due to dynamic motion, while at low temperature, moderate positive TE occurs in all directions. Investigation of the solid-state motion showed the change in enthalpy and entropy are quite different in the two temperature regions and solid-state NMR experiments support motion in the solid. Cycling experiments demonstrate that the solid-state motions and TE behaviors are completely reversible. These results reveal strategies for designing significant anisotropic and switchable behaviors in solid-state materials.

12.
Inorg Chem ; 62(19): 7150-7154, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37130277

RESUMO

Neutral triple-decker iron and cobalt complexes with a bridging 1,2-diboratabenzene ligand were accessed by reactions of a dilithium 1,2-diboratabenzene reagent with [Cp*FeCl]2 and [Cp*CoCl]2, respectively. While 1,2-diboratabenzene metal complexes are known, these represent the first examples of the ligand bridging two metals.

13.
IUCrdata ; 8(Pt 2): x230155, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36911077

RESUMO

The structure of the title complex, [RuCl2(C6H6NO)4], exhibits point group symmetry . The structure exhibits disorder around a axis. The 4-meth-oxy-pyridine ligands have a propeller-like arrangement around the RuII atom at 52.0 (3)° from the RuN4 plane.

14.
Acta Crystallogr E Crystallogr Commun ; 78(Pt 6): 594-598, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36072147

RESUMO

N-benzyl-cinchonidinium bromide, C26H29N2O+·Br-, with the systematic name (R)-[(2S,4S,5R)-1-benzyl-5-ethenyl-1-azoniabi-cyclo-[2.2.2]octan-2-yl](quinolin-4-yl)-methanol bromide, is a quaternary ammonium salt of the cinchona alkaloid cinchonidine. This salt is widely used as a chiral phase-transfer catalyst and chiral resolution agent. Both classical and non-classical hydrogen-bonding inter-actions, as well as anion effects have been shown to play key mechanistic roles in the catalysis of cinchona alkaloids. In an effort to understand the effects of water on these inter-molecular inter-actions, the structures of anhydrous N-benzyl-cinchonidinium bromide, (I), and the sesquihydrate, C26H29N2O+·Br-·1.5H2O, (II), were determined.

15.
Acta Crystallogr E Crystallogr Commun ; 78(Pt 4): 377-380, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35492285

RESUMO

The synthesis and the crystal structure of 1H-imidazole-1-methanol, C4H6N2O, are described. This compound comprises an imidazole ring with a methanol group attached at the 1-position affording an imine nitro-gen atom able to receive a hydrogen bond and an alcohol group able to donate to a hydrogen bond. This imidazole methanol crystallizes with monoclinic (P21/n) symmetry with three symmetry-unique mol-ecules. These three mol-ecules are connected via O-H⋯N hydrogen bonding in a head-to-tail configuration to form independent three-membered macrocycles.

16.
Molecules ; 27(3)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35164313

RESUMO

The ditopic halogen-bond (X-bond) donors 1,2-, 1,3-, and 1,4-diiodotetrafluorobenzene (1,2-, 1,3-, and 1,4-di-I-tFb, respectively) form binary cocrystals with the unsymmetrical ditopic X-bond acceptor trans-1-(2-pyridyl)-2-(4-pyridyl)ethylene (2,4-bpe). The components of each cocrystal (1,2-di-I-tFb)·(2,4-bpe), (1,3-di-I-tFb)·(2,4-bpe), and (1,4-di-I-tFb)·(2,4-bpe) assemble via N···I X-bonds. For (1,2-di-I-tFb)·(2,4-bpe) and (1,3-di-I-tFb)·(2,4-bpe), the X-bond donor supports the C=C bonds of 2,4-bpe to undergo a topochemical [2+2] photodimerization in the solid state: UV-irradiation of each solid resulted in stereospecific, regiospecific, and quantitative photodimerization of 2,4-bpe to the corresponding head-to-tail (ht) or head-to-head (hh) cyclobutane photoproduct, respectively.

17.
Chem Sci ; 12(36): 12107-12117, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34667576

RESUMO

Conjugated molecular chains have the potential to act as "molecular wires" that can be employed in a variety of technologies, including catalysis, molecular electronics, and quantum information technologies. Their successful application relies on a detailed understanding of the factors governing the electronic energy landscape and the dynamics of electrons in such molecules. We can gain insights into the energetics and dynamics of charges in conjugated molecules using time-resolved infrared (TRIR) detection combined with pulse radiolysis. Nitrile ν(C[triple bond, length as m-dash]N) bands can act as IR probes for charges, based on IR frequency shifts, because of their exquisite sensitivity to the degree of electron delocalization and induced electric field. Here, we show that the IR intensity and linewidth can also provide unique and complementary information on the nature of charges. Quantifications of IR intensity and linewidth in a series of nitrile-functionalized oligophenylenes reveal that the C[triple bond, length as m-dash]N vibration is coupled to the nuclear and electronic structural changes, which become more prominent when an excess charge is present. We synthesized a new series of ladder-type oligophenylenes that possess planar aromatic structures, as revealed by X-ray crystallography. Using these, we demonstrate that C[triple bond, length as m-dash]N vibrations can report charge fluctuations associated with nuclear movements, namely those driven by motions of flexible dihedral angles. This happens only when a charge has room to fluctuate in space.

18.
Acta Crystallogr E Crystallogr Commun ; 77(Pt 10): 1010-1013, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34667628

RESUMO

The synthesis and crystal structure of the title racemic compound, [Co(C2H8N2)3]Cl3.{[Na(H2O)6]Cl}0.5, are reported. The trivalent cobalt atom, which resides on a crystallographic threefold axis, is chelated by a single ethyl-ene di-amine (en) ligand and yields the tris-chelate [Co(en)3]3+ cation with distorted octa-hedral geometry after the application of crystal symmetry. The sodium cation (site symmetry ), has a single water mol-ecule bound to it in the asymmetric unit and yields a distorted, octa-hedrally coordinated hydrated [Na(H2O)6]+ cation after the application of symmetry. One of the chloride ions lies on a general position and the other has site symmetry. An extensive array of C-H⋯O, N-H⋯Cl and O-H⋯Cl hydrogen bonds exists between the ethyl-ene di-amine ligands, the water mol-ecules of hydration, and the anions present, thereby furnishing solid-state stability.

19.
Inorg Chem ; 60(21): 15901-15909, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34514780

RESUMO

Selective coupling of NO by a nonclassical dinuclear dinitrosyliron complex (D-DNIC) to form N2O is reported. The coupling is facilitated by the pyridinediimine (PDI) ligand scaffold, which enables the necessary denticity changes to produce mixed-valent, electron-deficient tethered DNICs. One-electron oxidation of the [{Fe(NO)2}]210/10 complex Fe2(PyrrPDI)(NO)4 (4) results in NO coupling to form N2O via the mixed-valent {[Fe(NO)2]2}9/10 species, which possesses an electron-deficient four-coordinate {Fe(NO)2}10 site, crucial in N-N bond formation. The hemilability of the PDI scaffold dictates the selectivity in N-N bond formation because stabilization of the five-coordinate {Fe(NO)2}9 site in the mixed-valent [{Fe(NO)2}]29/10 species, [Fe2(Pyr2PDI)(NO)4][PF6] (6), does not result in an electron-deficient, four-coordinate {Fe(NO)2}10 site, and hence no N-N coupling is observed.

20.
Acta Crystallogr C Struct Chem ; 77(Pt 9): 561-565, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34482300

RESUMO

The formation and crystal structure of a hydrated molecular salt that results in a square network is reported. The crystalline solid is based upon the tetraprotonated photoproduct rtct-tetrakis(pyridin-4-yl)cyclobutane (4H-rtct-TPCB)4+ along with two sulfate anions (SO42-) and eight waters of hydration, namely, 4,4',4'',4'''-(cyclobutane-1,2,3,4-tetrayl)tetrapyridinium bis(sulfate) octahydrate, C24H24N44+·2SO42-·8H2O. The fully protonated photoproduct acts as a four-connecting node within the square network by engaging in four charge-assisted N+-H...O hydrogen bonds to the sulfate anion. The observed hydrogen-bonding pattern in this square network is akin to T-silica, which is a metastable form of SiO2. The included water molecules and sulfate anions engage in numerous O-H...O hydrogen bonds to form various hydrogen-bonded ring structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA