Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Harmful Algae ; 133: 102599, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38485445

RESUMO

Cyanobacterial blooms present substantial challenges to managers and threaten ecological and public health. Although the majority of cyanobacterial bloom research and management focuses on factors that control bloom initiation, duration, toxicity, and geographical extent, relatively little research focuses on the role of loss processes in blooms and how these processes are regulated. Here, we define a loss process in terms of population dynamics as any process that removes cells from a population, thereby decelerating or reducing the development and extent of blooms. We review abiotic (e.g., hydraulic flushing and oxidative stress/UV light) and biotic factors (e.g., allelopathic compounds, infections, grazing, and resting cells/programmed cell death) known to govern bloom loss. We found that the dominant loss processes depend on several system specific factors including cyanobacterial genera-specific traits, in situ physicochemical conditions, and the microbial, phytoplankton, and consumer community composition. We also address loss processes in the context of bloom management and discuss perspectives and challenges in predicting how a changing climate may directly and indirectly affect loss processes on blooms. A deeper understanding of bloom loss processes and their underlying mechanisms may help to mitigate the negative consequences of cyanobacterial blooms and improve current management strategies.


Assuntos
Cianobactérias , Proliferação Nociva de Algas , Cianobactérias/fisiologia
2.
Water Res ; 219: 118573, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35643062

RESUMO

Carbon, nitrogen, and phosphorus are critical macroelements in freshwater systems. Historically, researchers and managers have focused on inorganic forms, based on the premise that the organic pool was not available for direct uptake by phytoplankton. We now know that phytoplankton can tap the organic nutrient pool through a number of mechanisms including direct uptake, enzymatic hydrolysis, mixotrophy, and through symbiotic relationships with microbial communities. In this review, we explore these mechanisms considering current and projected future anthropogenically-driven changes to freshwater systems. In particular, we focus on how naturally- and anthropogenically- derived organic nutrients can influence phytoplankton community structure. We also synthesize knowledge gaps regarding phytoplankton physiology and the potential challenges of nutrient management in an organically dynamic and anthropogenically modified world. Our review provides a basis for exploring these topics and suggests several avenues for future work on the relation between organic nutrients and eutrophication and their ecological implications in freshwater systems.


Assuntos
Eutrofização , Fitoplâncton , Água Doce , Lagos , Nitrogênio , Nutrientes , Fósforo , Fitoplâncton/fisiologia
3.
Harmful Algae ; 100: 101941, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33298366

RESUMO

Lake Superior has recently begun experiencing cyanobacterial blooms comprised of Dolichospermum lemmermannii near the Apostle Islands and along the southern shore of the western arm. Little is known about the origin of these blooms. Experiments were conducted during the summers of 2017 and 2018 to identify sources of propagules and characteristics of sites that were potential sources. The 2017 experiments were conducted using a factorial design with three source zones ('River', 'Lake', and 'Harbor'), two nutrient conditions (high and low N:P), and three temperatures (15, 20, and 25°C). At the end of the experiment, cyanobacteria were most abundant from the 'River' and 'Harbor' zones at low N:P and 20 and 25°C, with D. lemmermannii most abundant at 20°C. Subsequently, in 2018 we evaluated 26 specific inland locations from three waterbody types ('River', 'Lake/Pond', and 'Coastal') and explored similarities among those sites that produced cyanobacteria in high abundance when samples were incubated under optimal conditions (low N:P and 25°C). Under these growing conditions, we found high cyanobacteria abundance developed in samples from river sites with low ambient temperatures and high conductivity. Field monitoring showed that Lake Superior nearshore temperatures were higher than rivers. These observations suggest that blooms of D. lemmermannii in Lake Superior are initiated by fluvial seeding of propagules and highlight the importance of warmer temperatures and favorable nutrient and light conditions for subsequent extensive cyanobacterial growth. We argue that the watershed is an important source of biological loading of D. lemmermannii to Lake Superior and that when those cells reach the nearshore where there are warmer water temperatures and increased light, they can grow in abundance to produce blooms.


Assuntos
Cianobactérias , Lagos , Rios , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA