Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38405743

RESUMO

A hallmark of CRISPR immunity is the acquisition of short viral DNA sequences, known as spacers, that are transcribed into guide RNAs to recognize complementary sequences. The staphylococcal type III-A CRISPR-Cas system uses guide RNAs to locate viral transcripts and start a response that displays two mechanisms of immunity. When immunity is triggered by an early-expressed phage RNA, degradation of viral ssDNA can cure the host from infection. In contrast, when the RNA guide targets a late-expressed transcript, defense requires the activity of Csm6, a non-specific RNase. Here we show that Csm6 triggers a growth arrest of the host that provides immunity at the population level which hinders viral propagation to allow the replication of non-infected cells. We demonstrate that this mechanism leads to defense against not only the target phage but also other viruses present in the population that fail to replicate in the arrested cells. On the other hand, dormancy limits the acquisition and retention of spacers that trigger it. We found that the ssDNase activity of type III-A systems is required for the re-growth of a subset of the arrested cells, presumably through the degradation of the phage DNA, ending target transcription and inactivating the immune response. Altogether, our work reveals a built-in mechanism within type III-A CRISPR-Cas systems that allows the exit from dormancy needed for the subsistence of spacers that provide broad-spectrum immunity.

2.
bioRxiv ; 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37873082

RESUMO

Immunoglobulin A (IgA) is the most abundant antibody isotype produced across mammals and plays a specialized role in mucosal homeostasis 1 . Constantly secreted into the lumen of the intestine, IgA binds commensal microbiota to regulate their colonization and function 2,3 , with unclear implications for health. IgA deficiency is common in humans but is difficult to study due to its complex etiology and comorbidities 4-8 . Using genetically and environmentally controlled mice, here we show that IgA-deficient animals have a baseline alteration in the colon epithelium that increases susceptibility to multiple models of colorectal cancer. Transcriptome, imaging, and flow cytometry-based analyses revealed that, in the absence of IgA, colonic epithelial cells induce antibacterial factors and accelerate cell cycling in response to the microbiota. Oral treatment with IgA was sufficient to suppress aberrant epithelial proliferation independently of bacterial binding, suggesting that IgA provides a feedback signal to epithelial cells in parallel with its known roles in microbiome shaping. In a primary colonic organoid culture system, IgA directly suppresses epithelial growth. Conversely, the susceptibility of IgA-deficient mice to colorectal cancer was reversed by Notch inhibition to suppress the absorptive colonocyte developmental program, or by inhibition of the cytokine MIF, the receptor for which was upregulated in stem cells of IgA-deficient animals. These studies demonstrate a homeostatic function for IgA in tempering physiological epithelial responses to microbiota to maintain mucosal health.

3.
Front Immunol ; 13: 1007080, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36451809

RESUMO

Efficient mouse models to study SARS-CoV-2 infection are critical for the development and assessment of vaccines and therapeutic approaches to mitigate the current pandemic and prevent reemergence of COVID-19. While the first generation of mouse models allowed SARS-CoV-2 infection and pathogenesis, they relied on ectopic expression and non-physiological levels of human angiotensin-converting enzyme 2 (hACE2). Here we generated a mouse model carrying the minimal set of modifications necessary for productive infection with multiple strains of SARS-CoV-2. Substitution of only three amino acids in the otherwise native mouse Ace2 locus (Ace2 TripleMutant or Ace2™), was sufficient to render mice susceptible to both SARS-CoV-2 strains USA-WA1/2020 and B.1.1.529 (Omicron). Infected Ace2™ mice exhibited weight loss and lung damage and inflammation, similar to COVID-19 patients. Previous exposure to USA-WA1/2020 or mRNA vaccination generated memory B cells that participated in plasmablast responses during breakthrough B.1.1.529 infection. Thus, the Ace2™ mouse replicates human disease after SARS-CoV-2 infection and provides a tool to study immune responses to sequential infections in mice.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Camundongos , Animais , Enzima de Conversão de Angiotensina 2/genética , Modelos Animais de Doenças , Pandemias
4.
Nature ; 610(7932): 547-554, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36198790

RESUMO

Loss of Paneth cells and their antimicrobial granules compromises the intestinal epithelial barrier and is associated with Crohn's disease, a major type of inflammatory bowel disease1-7. Non-classical lymphoid cells, broadly referred to as intraepithelial lymphocytes (IELs), intercalate the intestinal epithelium8,9. This anatomical position has implicated them as first-line defenders in resistance to infections, but their role in inflammatory disease pathogenesis requires clarification. The identification of mediators that coordinate crosstalk between specific IEL and epithelial subsets could provide insight into intestinal barrier mechanisms in health and disease. Here we show that the subset of IELs that express γ and δ T cell receptor subunits (γδ IELs) promotes the viability of Paneth cells deficient in the Crohn's disease susceptibility gene ATG16L1. Using an ex vivo lymphocyte-epithelium co-culture system, we identified apoptosis inhibitor 5 (API5) as a Paneth cell-protective factor secreted by γδ IELs. In the Atg16l1-mutant mouse model, viral infection induced a loss of Paneth cells and enhanced susceptibility to intestinal injury by inhibiting the secretion of API5 from γδ IELs. Therapeutic administration of recombinant API5 protected Paneth cells in vivo in mice and ex vivo in human organoids with the ATG16L1 risk allele. Thus, we identify API5 as a protective γδ IEL effector that masks genetic susceptibility to Paneth cell death.


Assuntos
Proteínas Reguladoras de Apoptose , Doença de Crohn , Predisposição Genética para Doença , Linfócitos Intraepiteliais , Proteínas Nucleares , Celulas de Paneth , Animais , Humanos , Camundongos , Proteínas Reguladoras de Apoptose/metabolismo , Morte Celular , Doença de Crohn/genética , Doença de Crohn/metabolismo , Doença de Crohn/patologia , Predisposição Genética para Doença/genética , Mucosa Intestinal/patologia , Proteínas Nucleares/metabolismo , Celulas de Paneth/patologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos Intraepiteliais/imunologia , Linfócitos Intraepiteliais/metabolismo , Sobrevivência Celular , Organoides , Alelos
5.
Science ; 377(6606): 660-666, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35926021

RESUMO

The microbiome contributes to the development and maturation of the immune system. In response to commensal bacteria, intestinal CD4+ T lymphocytes differentiate into functional subtypes with regulatory or effector functions. The development of small intestine intraepithelial lymphocytes that coexpress CD4 and CD8αα homodimers (CD4IELs) depends on the microbiota. However, the identity of the microbial antigens recognized by CD4+ T cells that can differentiate into CD4IELs remains unknown. We identified ß-hexosaminidase, a conserved enzyme across commensals of the Bacteroidetes phylum, as a driver of CD4IEL differentiation. In a mouse model of colitis, ß-hexosaminidase-specific lymphocytes protected against intestinal inflammation. Thus, T cells of a single specificity can recognize a variety of abundant commensals and elicit a regulatory immune response at the intestinal mucosa.


Assuntos
Bacteroidetes , Linfócitos T CD4-Positivos , Colite , Mucosa Intestinal , beta-N-Acetil-Hexosaminidases , Animais , Bacteroidetes/enzimologia , Bacteroidetes/imunologia , Linfócitos T CD4-Positivos/imunologia , Antígenos CD8/imunologia , Colite/imunologia , Colite/microbiologia , Modelos Animais de Doenças , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , beta-N-Acetil-Hexosaminidases/imunologia
6.
Science ; 377(6603): 276-284, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35857588

RESUMO

γδ T cells represent a substantial fraction of intestinal lymphocytes at homeostasis, but they also constitute a major lymphocyte population infiltrating colorectal cancers (CRCs); however, their temporal contribution to CRC development or progression remains unclear. Using human CRC samples and murine CRC models, we found that most γδ T cells in premalignant or nontumor colons exhibit cytotoxic markers, whereas tumor-infiltrating γδ T cells express a protumorigenic profile. These contrasting T cell profiles were associated with distinct T cell receptor (TCR)-Vγδ gene usage in both humans and mice. Longitudinal intersectional genetics and antibody-dependent strategies targeting murine γδ T cells enriched in the epithelium at steady state led to heightened tumor development, whereas targeting γδ subsets that accumulate during CRC resulted in reduced tumor growth. Our results uncover temporal pro- and antitumor roles for γδ T cell subsets.


Assuntos
Neoplasias Colorretais , Citotoxicidade Imunológica , Intestinos , Linfócitos Intraepiteliais , Receptores de Antígenos de Linfócitos T gama-delta , Animais , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Humanos , Intestinos/imunologia , Linfócitos Intraepiteliais/imunologia , Camundongos , Receptores de Antígenos de Linfócitos T gama-delta/genética , Receptores de Antígenos de Linfócitos T gama-delta/fisiologia
7.
Cell Mol Immunol ; 19(7): 777-790, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35468944

RESUMO

The food colorant Red 40 is an environmental risk factor for colitis development in mice with increased expression of interleukin (IL)-23. This immune response is mediated by CD4+ T cells, but mechanistic insights into how these CD4+ T cells trigger and perpetuate colitis have remained elusive. Here, using single-cell transcriptomic analysis, we found that several CD4+ T-cell subsets are present in the intestines of colitic mice, including an interferon (IFN)-γ-producing subset. In vivo challenge of primed mice with Red 40 promoted rapid activation of CD4+ T cells and caused marked intestinal epithelial cell (IEC) apoptosis that was attenuated by depletion of CD4+ cells and blockade of IFN-γ. Ex vivo experiments showed that intestinal CD4+ T cells from colitic mice directly promoted apoptosis of IECs and intestinal enteroids. CD4+ T cell-mediated cytotoxicity was contact-dependent and required FasL, which promoted caspase-dependent cell death in target IECs. Genetic ablation of IFN-γ constrained IL-23- and Red 40-induced colitis development, and blockade of IFN-γ inhibited epithelial cell death in vivo. These results advance the understanding of the mechanisms regulating colitis development caused by IL-23 and food colorants and identify IFN-γ+ cytotoxic CD4+ T cells as a new potential therapeutic target for colitis.


Assuntos
Linfócitos T CD4-Positivos , Colite , Corantes de Alimentos , Interleucina-23 , Animais , Linfócitos T CD4-Positivos/imunologia , Colite/induzido quimicamente , Colite/imunologia , Corantes de Alimentos/efeitos adversos , Interferon gama/metabolismo , Interleucina-23/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL
8.
Sci Immunol ; 6(64): eabg7506, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34597123

RESUMO

Macrophages are an essential part of tissue development and physiology. Perivascular macrophages have been described in tissues and appear to play a role in development and disease processes, although it remains unclear what the key features of these cells are. Here, we identify a subpopulation of perivascular macrophages in several organs, characterized by their dependence on the transcription factor c-MAF and displaying nonconventional macrophage markers including LYVE1, folate receptor 2, and CD38. Conditional deletion of c-MAF in macrophage lineages caused ablation of perivascular macrophages in the brain and altered muscularis macrophages program in the intestine. In the white adipose tissue (WAT), c-MAF­deficient perivascular macrophages displayed an altered gene expression profile, which was linked to an increased vascular branching. Upon feeding high-fat diet (HFD), mice with c-MAF­deficient macrophages showed improved metabolic parameters compared with wild-type mice, including less weight gain, greater glucose tolerance, and reduced inflammatory cell profile in WAT. These results define c-MAF as a central regulator of the perivascular macrophage transcriptional program in vivo and reveal an important role for this tissue-resident macrophage population in the regulation of metabolic syndrome.


Assuntos
Dieta , Macrófagos/metabolismo , Síndrome Metabólica/metabolismo , Proteínas Proto-Oncogênicas c-maf/metabolismo , Tecido Adiposo/metabolismo , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos
9.
Nat Immunol ; 22(8): 969-982, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34312548

RESUMO

The transcription factor ThPOK (encoded by the Zbtb7b gene) controls homeostasis and differentiation of mature helper T cells, while opposing their differentiation to CD4+ intraepithelial lymphocytes (IELs) in the intestinal mucosa. Thus CD4 IEL differentiation requires ThPOK transcriptional repression via reactivation of the ThPOK transcriptional silencer element (SilThPOK). In the present study, we describe a new autoregulatory loop whereby ThPOK binds to the SilThPOK to maintain its own long-term expression in CD4 T cells. Disruption of this loop in vivo prevents persistent ThPOK expression, leads to genome-wide changes in chromatin accessibility and derepresses the colonic regulatory T (Treg) cell gene expression signature. This promotes selective differentiation of naive CD4 T cells into GITRloPD-1loCD25lo (Triplelo) Treg cells and conversion to CD4+ IELs in the gut, thereby providing dominant protection from colitis. Hence, the ThPOK autoregulatory loop represents a key mechanism to physiologically control ThPOK expression and T cell differentiation in the gut, with potential therapeutic relevance.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Linfócitos Intraepiteliais/citologia , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Reguladores/citologia , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular/imunologia , Colite/imunologia , Colite/prevenção & controle , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Feminino , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Reguladores/imunologia , Fatores de Transcrição/genética , Transcrição Gênica/genética
10.
Science ; 371(6535)2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33737460

RESUMO

The intestine is a site of direct encounter with the external environment and must consequently balance barrier defense with nutrient uptake. To investigate how nutrient uptake is regulated in the small intestine, we tested the effect of diets with different macronutrient compositions on epithelial gene expression. We found that enzymes and transporters required for carbohydrate digestion and absorption were regulated by carbohydrate availability. The "on-demand" induction of this machinery required γδ T cells, which regulated this program through the suppression of interleukin-22 production by type 3 innate lymphoid cells. Nutrient availability altered the tissue localization and transcriptome of γδ T cells. Additionally, transcriptional responses to diet involved cellular remodeling of the epithelial compartment. Thus, this work identifies a role for γδ T cells in nutrient sensing.


Assuntos
Carboidratos da Dieta/administração & dosagem , Carboidratos da Dieta/metabolismo , Enterócitos/fisiologia , Interleucinas/metabolismo , Mucosa Intestinal/fisiologia , Receptores de Antígenos de Linfócitos T gama-delta , Subpopulações de Linfócitos T/fisiologia , Adaptação Fisiológica , Animais , Comunicação Celular , Proteínas Alimentares/administração & dosagem , Digestão , Regulação da Expressão Gênica , Interleucinas/genética , Absorção Intestinal , Mucosa Intestinal/citologia , Intestino Delgado/citologia , Intestino Delgado/metabolismo , Camundongos Endogâmicos C57BL , Nutrientes/administração & dosagem , Nutrientes/metabolismo , Subpopulações de Linfócitos T/imunologia , Transcrição Gênica , Transcriptoma , Interleucina 22
11.
J Exp Med ; 216(4): 786-806, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30862706

RESUMO

Tissue-resident macrophages are the most abundant immune cell population in healthy adipose tissue. Adipose tissue macrophages (ATMs) change during metabolic stress and are thought to contribute to metabolic syndrome. Here, we studied ATM subpopulations in steady state and in response to nutritional and infectious challenges. We found that tissue-resident macrophages from healthy epididymal white adipose tissue (eWAT) tightly associate with blood vessels, displaying very high endocytic capacity. We refer to these cells as vasculature-associated ATMs (VAMs). Chronic high-fat diet (HFD) results in the accumulation of a monocyte-derived CD11c+CD64+ double-positive (DP) macrophage eWAT population with a predominant anti-inflammatory/detoxifying gene profile, but reduced endocytic function. In contrast, fasting rapidly and reversibly leads to VAM depletion, while acute inflammatory stress induced by pathogens transiently depletes VAMs and simultaneously boosts DP macrophage accumulation. Our results indicate that ATM populations dynamically adapt to metabolic stress and inflammation, suggesting an important role for these cells in maintaining tissue homeostasis.


Assuntos
Tecido Adiposo Branco/metabolismo , Vasos Sanguíneos/metabolismo , Jejum/metabolismo , Macrófagos/metabolismo , Infecções por Salmonella/metabolismo , Estresse Fisiológico/fisiologia , Adipócitos/metabolismo , Animais , Antígenos CD11/metabolismo , Dieta Hiperlipídica , Homeostase/fisiologia , Inflamação/induzido quimicamente , Inflamação/microbiologia , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Receptores de IgG/metabolismo , Infecções por Salmonella/microbiologia , Salmonella enterica/metabolismo
12.
Cell ; 172(4): 825-840.e18, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29336888

RESUMO

Therapeutic harnessing of adaptive immunity via checkpoint inhibition has transformed the treatment of many cancers. Despite unprecedented long-term responses, most patients do not respond to these therapies. Immunotherapy non-responders often harbor high levels of circulating myeloid-derived suppressor cells (MDSCs)-an immunosuppressive innate cell population. Through genetic and pharmacological approaches, we uncovered a pathway governing MDSC abundance in multiple cancer types. Therapeutic liver-X nuclear receptor (LXR) agonism reduced MDSC abundance in murine models and in patients treated in a first-in-human dose escalation phase 1 trial. MDSC depletion was associated with activation of cytotoxic T lymphocyte (CTL) responses in mice and patients. The LXR transcriptional target ApoE mediated these effects in mice, where LXR/ApoE activation therapy elicited robust anti-tumor responses and also enhanced T cell activation during various immune-based therapies. We implicate the LXR/ApoE axis in the regulation of innate immune suppression and as a target for enhancing the efficacy of cancer immunotherapy in patients.


Assuntos
Apolipoproteínas E/imunologia , Imunidade Inata , Receptores X do Fígado/imunologia , Células Supressoras Mieloides/imunologia , Neoplasias Experimentais/imunologia , Animais , Apolipoproteínas E/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Linhagem Celular Tumoral , Feminino , Receptores X do Fígado/genética , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Células Supressoras Mieloides/patologia , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Elife ; 62017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28895840

RESUMO

MyD88 is the main adaptor molecule for TLR and IL-1R family members. Here, we demonstrated that T-cell intrinsic MyD88 signaling is required for proliferation, protection from apoptosis and expression of activation/memory genes during infection with the intracellular parasite Trypanosoma cruzi, as evidenced by transcriptome and cytometry analyses in mixed bone-marrow (BM) chimeras. The lack of direct IL-18R signaling in T cells, but not of IL-1R, phenocopied the absence of the MyD88 pathway, indicating that IL-18R is a critical MyD88-upstream pathway involved in the establishment of the Th1 response against an in vivo infection, a presently controvert subject. Accordingly, Il18r1-/- mice display lower levels of Th1 cells and are highly susceptible to infection, but can be rescued from mortality by the adoptive transfer of WT CD4+ T cells. Our findings establish the T-cell intrinsic IL-18R/MyD88 pathway as a crucial element for induction of cognate Th1 responses against an important human pathogen.


Assuntos
Doença de Chagas/imunologia , Subunidade alfa de Receptor de Interleucina-18/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais , Células Th1/imunologia , Células Th1/parasitologia , Trypanosoma cruzi/imunologia , Transferência Adotiva , Animais , Doença de Chagas/terapia , Modelos Animais de Doenças , Citometria de Fluxo , Perfilação da Expressão Gênica , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sobrevida
14.
Cell ; 171(4): 783-794.e13, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-28942917

RESUMO

Intestinal intraepithelial lymphocytes (IELs) are located at the critical interface between the intestinal lumen, which is chronically exposed to food and microbes, and the core of the body. Using high-resolution microscopy techniques and intersectional genetic tools, we investigated the nature of IEL responses to luminal microbes. We observed that TCRγδ IELs exhibit unique microbiota-dependent location and movement patterns in the epithelial compartment. This behavioral pattern quickly changes upon exposure to different enteric pathogens, resulting in increased interepithelial cell (EC) scanning, expression of antimicrobial genes, and glycolysis. Both dynamic and metabolic changes to γδ IEL depend on pathogen sensing by ECs. Direct modulation of glycolysis is sufficient to change γδ IEL behavior and susceptibility to early pathogen invasion. Our results uncover a coordinated EC-IEL response to enteric infections that modulates lymphocyte energy utilization and dynamics and supports maintenance of the intestinal epithelial barrier. VIDEO ABSTRACT.


Assuntos
Intestinos/citologia , Intestinos/imunologia , Infecções por Salmonella/imunologia , Linfócitos T/imunologia , Animais , Células Epiteliais/metabolismo , Vigilância Imunológica , Mucosa Intestinal/imunologia , Camundongos , Infecções por Salmonella/microbiologia , Salmonella typhimurium/fisiologia
15.
J Exp Med ; 214(5): 1211-1226, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28432200

RESUMO

Tissue adaptation is an intrinsic component of immune cell development, influencing both resistance to pathogens and tolerance. Chronically stimulated surfaces of the body, in particular the gut mucosa, are the major sites where immune cells traffic and reside. Their adaptation to these environments requires constant discrimination between natural stimulation coming from harmless microbiota and food, and pathogens that need to be cleared. This review will focus on the adaptation of lymphocytes to the gut mucosa, a highly specialized environment that can help us understand the plasticity of leukocytes arriving at various tissue sites and how tissue-related factors operate to shape immune cell fate and function.


Assuntos
Tolerância Imunológica/imunologia , Mucosa Intestinal/imunologia , Adaptação Fisiológica/imunologia , Adaptação Fisiológica/fisiologia , Animais , Formação de Anticorpos/imunologia , Formação de Anticorpos/fisiologia , Humanos , Linfócitos/imunologia , Linfócitos/fisiologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/fisiologia
16.
Science ; 352(6293): 1581-6, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27256884

RESUMO

Foxp3(+) regulatory T cells in peripheral tissues (pT(regs)) are instrumental in limiting inflammatory responses to nonself antigens. Within the intestine, pT(regs) are located primarily in the lamina propria, whereas intraepithelial CD4(+) T cells (CD4(IELs)), which also exhibit anti-inflammatory properties and depend on similar environmental cues, reside in the epithelium. Using intravital microscopy, we show distinct cell dynamics of intestinal T(regs) and CD4(IELs) Upon migration to the epithelium, T(regs) lose Foxp3 and convert to CD4(IELs) in a microbiota-dependent manner, an effect attributed to the loss of the transcription factor ThPOK. Finally, we demonstrate that pT(regs) and CD4(IELs) perform complementary roles in the regulation of intestinal inflammation. These results reveal intratissue specialization of anti-inflammatory T cells shaped by discrete niches of the intestine.


Assuntos
Animais , Movimento Celular , Rastreamento de Células , Colite , Fator 3-gama Nuclear de Hepatócito , Mucosa Intestinal , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microbiota , Linfócitos T Reguladores , Fatores de Transcrição
17.
J Immunol Methods ; 421: 89-95, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25841547

RESUMO

The constant interaction between intestinal epithelial cells (IECs) and intraepithelial lymphocytes (IELs) is thought to regulate mucosal barrier function and immune responses against invading pathogens. IELs represent a heterogeneous population of mostly activated and antigen-experienced T cells, but the biological function of IELs and their relationship with IECs is still poorly understood. Here, we describe a method to study T-cell-epithelial cell interactions using a recently established long-term intestinal "enteroid" culture system. This system allowed the study of peripheral T cell survival, proliferation, differentiation and behavior during long-term co-cultures with crypt-derived 3-D enteroids. Peripheral T cells activated in the presence of enteroids acquire several features of IELs, including morphology, membrane markers and movement in the epithelial layer. This co-culture system may facilitate the investigation of complex interactions between intestinal epithelial cells and immune cells, particularly allowing long term-cultures and studies targeting specific pathways in IEC or immune cell compartments.


Assuntos
Comunicação Celular/imunologia , Células Epiteliais/imunologia , Mucosa Intestinal/imunologia , Linfócitos T/imunologia , Junções Íntimas/imunologia , Animais , Diferenciação Celular/imunologia , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Citometria de Fluxo , Mucosa Intestinal/citologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
18.
J Immunol ; 194(11): 5253-60, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25917102

RESUMO

The hormone leptin plays a key role in energy homeostasis, and the absence of either leptin or its receptor (LepR) leads to severe obesity and metabolic disorders. To avoid indirect effects and to address the cell-intrinsic role of leptin signaling in the immune system, we conditionally targeted LepR in T cells. In contrast with pleiotropic immune disorders reported in obese mice with leptin or LepR deficiency, we found that LepR deficiency in CD4(+) T cells resulted in a selective defect in both autoimmune and protective Th17 responses. Reduced capacity for differentiation toward a Th17 phenotype by lepr-deficient T cells was attributed to reduced activation of the STAT3 and its downstream targets. This study establishes cell-intrinsic roles for LepR signaling in the immune system and suggests that leptin signaling during T cell differentiation plays a crucial role in T cell peripheral effector function.


Assuntos
Diferenciação Celular/imunologia , Leptina/imunologia , Obesidade/imunologia , Receptores para Leptina/imunologia , Células Th17/citologia , Animais , Autoimunidade/genética , Autoimunidade/imunologia , Diferenciação Celular/genética , Células Cultivadas , Citrobacter rodentium/imunologia , Colite/imunologia , Infecções por Enterobacteriaceae/imunologia , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Receptores para Leptina/genética , Fator de Transcrição STAT3/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Células Th17/imunologia
19.
Immunity ; 41(2): 244-56, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25148025

RESUMO

The intestinal epithelium harbors large populations of activated and memory lymphocytes, yet these cells do not cause tissue damage in the steady state. We investigated how intestinal T cell effector differentiation is regulated upon migration to the intestinal epithelium. Using gene loss- and gain-of-function strategies, as well as reporter approaches, we showed that cooperation between the transcription factors T-bet and Runx3 resulted in suppression of conventional CD4(+) T helper functions and induction of an intraepithelial lymphocyte (IEL) program that included expression of IEL markers such as CD8αα homodimers. Interferon-γ sensing and T-bet expression by CD4(+) T cells were both required for this program, which was distinct from conventional T helper differentiation but shared by other IEL populations, including TCRαß(+)CD8αα(+) IELs. We conclude that the gut environment provides cues for IEL maturation through the interplay between T-bet and Runx3, allowing tissue-specific adaptation of mature T lymphocytes.


Assuntos
Subunidade alfa 3 de Fator de Ligação ao Core/imunologia , Proteínas com Domínio T/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Antígenos CD8/biossíntese , Diferenciação Celular/imunologia , Células Cultivadas , Colite/genética , Colite/imunologia , Proteínas de Ligação a DNA/imunologia , Interferon gama/imunologia , Interleucinas/imunologia , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Antígenos de Linfócitos T alfa-beta/biossíntese , Receptores de Citocinas/genética , Receptores de Interferon/genética , Receptores de Interleucina , Transdução de Sinais/imunologia , Proteínas com Domínio T/biossíntese , Proteínas com Domínio T/genética , Fatores de Transcrição/imunologia , Tretinoína , Regulação para Cima , Receptor de Interferon gama
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA