Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Foodborne Pathog Dis ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38708682

RESUMO

Hepatitis E virus (HEV) infects roughly 20 million people worldwide, causing self-limiting acute hepatic disease that can evolve into a chronic course. HEV-3, HEV-4, and HEV-7 genotypes are zoonotic and transmitted to humans by consuming raw or undercooked meat. Here, we developed an indirect ELISA based on the recombinant HEV-3 capsid and performed a seroprevalence study on domestic swine in northeastern Brazil. Our in-house ELISA was initially validated using a subset of 79 sera characterized by concordant results for two distinct commercial ELISA kits. Our ELISA exhibited excellent sensitivity (94%) and specificity (100%), with an area under the curve of 0.99 Further testing, including 212 swine sera, revealed a seroprevalence of 57.5% (95% confidence interval, 50.6-64.3%). Our findings indicate that the novel ELISA test could accurately detect specific anti-HEV antibodies in domestic pigs and should be further validated in humans and other mammals.

2.
Sci Rep ; 14(1): 2178, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272944

RESUMO

Recognition of the mRNA 5' end is a critical step needed for translation initiation. This step is performed by the cap binding protein eIF4E, which joins the larger eIF4G subunit to form the eIF4F complex. Trypanosomatids have a minimum of five different eIF4F-like complexes formed through specific but not well-defined interactions between four different eIF4E and five eIF4G homologues. The EIF4E6/EIF4G5 complex has been linked with the stage-specific translation of mRNAs encoding the major Trypanosoma brucei virulence factors. Here, to better define the molecular basis for the TbEIF4E6/TbEIF4G5 interaction, we describe the identification of the peptide interacting with TbEIF4E6 in the region comprising residues 79-166 of TbEIF4G5. The TbEIF4E6-TbEIF4G5_79-116 complex reconstituted with recombinant proteins is highly stable even in the absence of cap-4. The crystal structure of the complex was subsequently solved, revealing extensive interacting surfaces. Comparative analyses highlight the conservation of the overall structural arrangement of different eIF4E/eIF4G complexes. However, highly different interacting surfaces are formed with distinct binding contacts occurring both in the canonical and noncanonical elements within eIF4G and the respective eIF4E counterpart. These specific pairs of complementary interacting surfaces are likely responsible for the selective association needed for the formation of distinct eIF4F complexes in trypanosomatids.


Assuntos
Fator de Iniciação 4F em Eucariotos , Trypanosoma brucei brucei , Fator de Iniciação 4F em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Trypanosoma brucei brucei/genética , Ligação Proteica , RNA Mensageiro/metabolismo
3.
Viruses ; 15(3)2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36992353

RESUMO

We present a genome polymorphisms/machine learning approach for severe COVID-19 prognosis. Ninety-six Brazilian severe COVID-19 patients and controls were genotyped for 296 innate immunity loci. Our model used a feature selection algorithm, namely recursive feature elimination coupled with a support vector machine, to find the optimal loci classification subset, followed by a support vector machine with the linear kernel (SVM-LK) to classify patients into the severe COVID-19 group. The best features that were selected by the SVM-RFE method included 12 SNPs in 12 genes: PD-L1, PD-L2, IL10RA, JAK2, STAT1, IFIT1, IFIH1, DC-SIGNR, IFNB1, IRAK4, IRF1, and IL10. During the COVID-19 prognosis step by SVM-LK, the metrics were: 85% accuracy, 80% sensitivity, and 90% specificity. In comparison, univariate analysis under the 12 selected SNPs showed some highlights for individual variant alleles that represented risk (PD-L1 and IFIT1) or protection (JAK2 and IFIH1). Variant genotypes carrying risk effects were represented by PD-L2 and IFIT1 genes. The proposed complex classification method can be used to identify individuals who are at a high risk of developing severe COVID-19 outcomes even in uninfected conditions, which is a disruptive concept in COVID-19 prognosis. Our results suggest that the genetic context is an important factor in the development of severe COVID-19.


Assuntos
COVID-19 , Genoma Humano , Humanos , Antígeno B7-H1 , Helicase IFIH1 Induzida por Interferon , Brasil/epidemiologia , COVID-19/diagnóstico , COVID-19/genética , Inteligência Artificial , Algoritmos , Genômica
4.
PLoS Negl Trop Dis ; 16(5): e0009805, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35551520

RESUMO

BACKGROUND: The Hemagglutination assay (HA) is widely used in plague diagnosis, however, it has a subjective interpretation and demands high amounts of antigen and other immunobiological supplies. On the other hand, the conventional Anti-IgG ELISA is limited by the need of specific conjugates for multiple plague hosts, which leaves a gap for new diagnostic methods able to cover both the diagnosis of human cases and the epidemiological surveillance of multiple sentinel species. METHODS: We developed an ELISA Protein A-peroxidase method to detect anti-F1 antibodies across several species, including humans. To determine the cut-off and performance rates, HA results from 288 samples (81 rabbits, 64 humans, 66 rodents and 77 dogs) were used as reference. Next, we evaluated the agreement between Protein A-ELISA and Anti-IgG ELISA in an expanded sample set (n = 487). RESULTS: Optimal conditions were found with 250ng/well of F1 and 1:500 serum dilution. Protein A-ELISA showed high repeatability and reproducibility. We observed good correlation rates between the Protein A and IgG ELISAs optical densities and a higher positive/negative OD ratio for the Protein A-ELISA method. The overall sensitivity, specificity and area under the curve for Protein A-ELISA were 94%, 99% and 0.99, respectively. Similar results were observed for each species separately. In the analysis of the expanded sample set, there was a strong agreement between Protein A and IgG assays (kappa = 0.97). Furthermore, there was no cross-reaction with other common infectious diseases, such as dengue, Zika, Chagas disease, tuberculosis (humans) and ehrlichiosis, anaplasmosis and leishmaniasis (dogs). CONCLUSIONS: Altogether, the Protein A-ELISA showed high performance when compared both to HA and Anti-IgG ELISA, with a polyvalent single protocol that requires reduced amounts of antigen and can be employed to any plague hosts.


Assuntos
Peste , Animais , Cães , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Imunoglobulina G , Peste/diagnóstico , Peste/veterinária , Coelhos , Reprodutibilidade dos Testes , Roedores , Sensibilidade e Especificidade , Proteína Estafilocócica A , Zika virus , Infecção por Zika virus
5.
Acta Trop ; 231: 106427, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35339434

RESUMO

Plague is a flea-borne zoonosis that affects a wide range of mammals and still causes outbreaks in human populations yearly across several countries. While crucial for proper treatment, early diagnosis is still a major challenge in low- and middle-income countries due to poor access to laboratory infrastructure in rural areas. To tackle this issue, we developed and evaluated a new Fraction 1 capsular antigen (F1)-based rapid diagnostic test (RDT) as an alternative method for plague serological diagnosis and surveillance in humans and other mammals. In this study, 187 serum samples from humans, dogs, rodents and rabbits were retrospectively assessed using the plague RDT method. To calculate its performance, results were compared to those obtained by traditional hemagglutination (HA) and ELISA, which are well-established methods in the plague routine serodiagnosis. Remarkably, the results from RDT were in full agreement with those from the ELISA and HA assays, resulting in 100% (CI 95% = 95.5-100%) of sensitivity and 100% (CI 95% = 96.6-100%) of specificity. Accordingly, the Cohen's Kappa test coefficient was 1.0 (almost perfect agreement). Moreover, the RDT showed no cross-reaction when tested with sera from individuals positive to other pathogens, such as Y. pseudotuberculosis, Yersinia enterocolitica, Anaplasma platys, Ehrlichia canis and Leishmania infantum. Although preliminary, this study brings consistent proof-of-concept results with high performance of the Plague RDT when compared to HA and ELISA. Although further human and animal population-based studies will be necessary to validate these findings, the data presented here show that the plague RDT is highly sensitive and specific, polyvalent to several mammal species and simple to use in field surveillance or point-of-care situations with instant results.


Assuntos
Peste , Yersinia pestis , Animais , Testes Diagnósticos de Rotina , Cães , Humanos , Mamíferos , Peste/diagnóstico , Peste/epidemiologia , Peste/veterinária , Coelhos , Estudos Retrospectivos
6.
Sci Rep ; 11(1): 7640, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33828146

RESUMO

Human gammaherpesvirus 8 (HHV-8) consists of six major clades (A-F) based on the genetic sequence of the open reading frame (ORF)-K1. There are a few conflicting reports regarding the global distribution of the different HHV-8 genotypes. This study aimed to determine the global distribution of the different HHV-8 genotypes based on phylogenetic analysis of the ORF-K1 coding region using sequences published in the GenBank during 1997-2020 and construct a phylogenetic tree using the maximum likelihood algorithm with the GTR + I + G nucleotide substitution model. A total of 550 sequences from 38 countries/origins were analysed in this study. Genotypes A and C had similar global distributions and were prevalent in Africa and Europe. Genotype B was prevalent in Africa. Of the rare genotypes, genotype D was reported in East Asia and Oceania and genotype E in South America, while genotype F was prevalent in Africa. The highest genotypic diversity was reported in the American continent, with Brazil housing five HHV-8 genotypes (A, B, C, E, and F). In this study, we present update of the global distribution of HHV-8 genotypes, providing a basis for future epidemiological and evolutionary studies of HHV-8.


Assuntos
Infecções por Herpesviridae/epidemiologia , Herpesvirus Humano 8/genética , Sarcoma de Kaposi/genética , DNA Viral/genética , Bases de Dados Genéticas , Gammaherpesvirinae/genética , Gammaherpesvirinae/patogenicidade , Variação Genética/genética , Genótipo , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/virologia , Herpesvirus Humano 8/patogenicidade , Humanos , Fases de Leitura Aberta/genética , Filogenia , Sarcoma de Kaposi/epidemiologia , Sarcoma de Kaposi/virologia , Análise de Sequência de DNA/métodos , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA