Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38746439

RESUMO

The transformative potential of gene editing technologies hinges on the development of safe and effective delivery methods. In this study, we developed a temperature-sensitive and interferon-silent Sendai virus (ts SeV) as a novel delivery vector for CRISPR-Cas9 and for efficient gene editing in sensitive human cell types without inducing IFN responses. ts SeV demonstrates unprecedented transduction efficiency in human CD34+ hematopoietic stem and progenitor cells (HSPCs) including transduction of the CD34+/CD38-/CD45RA-/CD90+(Thy1+)/CD49fhigh stem cell enriched subpopulation. The frequency of CCR5 editing exceeded 90% and bi-allelic CCR5 editing exceeded 70% resulting in significant inhibition of HIV-1 infection in primary human CD14+ monocytes. These results demonstrate the potential of the ts SeV platform as a safe, efficient, and flexible addition to the current gene-editing tool delivery methods, which may help to further expand the possibilities in personalized medicine and the treatment of genetic disorders.

2.
J Mol Biol ; 430(24): 5280-5293, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30342007

RESUMO

TRIM25 is a multi-domain, RING-type E3 ubiquitin ligase of the tripartite motif family that has important roles in multiple RNA-dependent processes. In particular, TRIM25 functions as an effector of RIG-I and ZAP, which are innate immune sensors that recognize viral RNA and induce ubiquitin-dependent anti-viral response mechanisms. TRIM25 is reported to also bind RNA, but the molecular details of this interaction or its relevance to anti-viral defense have not been elucidated. Here, we characterize the RNA-binding activity of TRIM25 and find that the protein binds both single-stranded and double-stranded RNA. Multiple regions of TRIM25 contribute to this functionality, including the C-terminal SPRY domain and a lysine-rich motif in the linker segment connecting the SPRY and coiled-coil domains. RNA binding modulates TRIM25's ubiquitination activity in vitro, its localization in cells, and its anti-viral activity. Taken together with other studies, our results indicate that RNA binding by TRIM25 has at least three important functional consequences: by enhancing ubiquitination activity, either through allosteric effects or through clustering of multiple TRIM25 molecules; by modulating the multi-domain structure of the TRIM25 dimer, and thereby structural coupling of the SPRY and RBCC elements during the ubiquitination reaction; and by facilitating subcellular localization of the E3 ligase during virus infection.


Assuntos
RNA Viral/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Proteínas com Motivo Tripartido/química , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Vírus/patogenicidade , Regulação Alostérica , Antivirais/química , Antivirais/metabolismo , Sítios de Ligação , Vírus da Dengue/genética , Vírus da Dengue/patogenicidade , Células HEK293 , Células HeLa , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A/patogenicidade , Ligação Proteica , Domínios Proteicos , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/metabolismo , RNA Viral/química , Ubiquitinação , Vírus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA