Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
1.
J Thorac Oncol ; 19(5): 677-697, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38719424

RESUMO

In this PRO-CON debate, you will read very different perspectives about a simple question regarding an observation under the microscope: What is the significance of tumor cells in the air spaces of the lung parenchyma beyond the tumor edge of a resected lung cancer? An important underlying question is whether this entire PRO-CON debate is a mere academic exercise or whether spread through air spaces (STAS), as currently defined, describes a clinically useful phenomenon. The journey of STAS began with a complete paradigm shift to reverse the thinking that all air space tumor cells beyond the edge of lung cancers are an artifact. This led to a new concept where STAS could be separated from artifacts with a definition that has proven to be clinically useful. As with any major change in thinking, it is understandable that there would be some disagreement with this paradigm shift. Nevertheless, after a decade since it was described, many pathologists and clinicians around the world have found STAS to provide important information about the behavior of lung cancer. Numerous PRO-STAS articles supporting the usefulness of STAS have been published with clinical data on many thousands of patients from numerous institutions all over the world. In contrast, for the CON-STAS articles, widespread international representation and data are limited. It is now difficult to ignore the numerous reports and is reasonable to consider how to use the presence of STAS in clinical decisions. Hopefully, this PRO-CON debate will further stimulate clinical and scientific investigations aimed at a better understanding of STAS.


Assuntos
Artefatos , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia
2.
Mod Pathol ; : 100520, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38777035

RESUMO

The new grading system for lung adenocarcinoma (ADC) proposed by the International Association for the Study of Lung Cancer (IASLC) defines prognostic subgroups based on histologic patterns observed on surgical specimens. This study seeks to provide novel insights into the IASLC grading system, with a particular focus on recurrence-specific survival (RSS) and lung cancer-specific survival (LCSS) among patients with stage I ADC. Under the IASLC grading system, tumors were classified as grade 1 (lepidic predominant with <20% high-grade patterns [micropapillary, solid, complex glandular]), grade 2 (acinar or papillary predominant with <20% high-grade patterns), or grade 3 (≥20% high-grade patterns). Kaplan-Meier survival estimates, pathologic features, and genomic profiles were investigated for patients whose disease was reclassified to a higher grade under the IASLC grading system on the basis of the hypothesis that they would strongly resemble patients with predominant high-grade tumors. Overall, 423 of 1443 patients (29%) with grade 1 or 2 tumors by the predominant pattern-based grading system had their tumors upgraded to grade 3 by the IASLC grading system. The RSS curves for patients with upgraded tumors were significantly different from those for patients with grade 1 or 2 tumors (log-rank p<0.001) but not from those for patients with predominant high-grade patterns (p=0.3). Patients with upgraded tumors had a similar incidence of visceral pleural invasion and spread of tumor through air spaces as patients with predominant high-grade patterns. In multivariable models, the IASLC grading system remained significantly associated with RSS and LCSS after adjustment for aggressive pathologic features such as visceral pleural invasion and spread of tumor through air spaces. The IASLC grading system outperforms the predominant pattern-based grading system and appropriately reclassifies tumors into higher grades with worse prognosis, even after other pathologic features of aggressiveness are considered.

3.
JCO Precis Oncol ; 8: e2300470, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38691815

RESUMO

PURPOSE: Small cell lung cancer (SCLC) often metastasizes to the brain and has poor prognosis. SCLC subtypes distinguished by expressing transcriptional factors ASCL1 or NEUROD1 have been identified. This study investigates the impact of transcription factor-defined SCLC subtype on incidence and outcomes of brain metastases (BMs). METHODS: Patients with SCLC with ASCL1 (A) and NEUROD1 (N) immunohistochemical expression status were identified and classified: (1) A+/N-, (2) A+/N+, (3) A-/N+, and (4) A-/N-. Cumulative incidence competing risk analyses were used to assess incidence of CNS progression. Cox proportional hazards models were used for multivariable analyses of overall survival (OS) and CNS progression-free survival (CNS-PFS). RESULTS: Of 164 patients, most were either A+/N- or A+/N+ (n = 62, n = 63, respectively). BMs were present at diagnosis in 24 patients (15%). Among them, the 12-month cumulative incidence of subsequent CNS progression was numerically highest for A+/N- (50% [95% CI, 10.5 to 74.7]; P = .47). Among those BM-free at diagnosis, the 12-month cumulative incidence of CNS progression was numerically the highest for A+/N- (16% [95% CI, 7.5 to 27.9]) and A-/N+ (9.1% [95% CI, 0.0 to 34.8]; P = .20). Both subtypes, A+/N- and A-/N+, had worse OS compared with A+/N+ (A+/N-: hazard ratio [HR], 1.62 [95% CI, 1.01 to 2.51]; P < .05; A-/N+: HR, 3.02 [95% CI, 1.35 to 6.76]; P = .007). Excellent response rates (28, 65% CR/PR) across subtypes were seen in patients who had CNS-directed radiotherapy versus systemic therapy alone (9, 36% CR/PR). CONCLUSION: To our knowledge, this report is the first to investigate CNS-specific outcomes based on transcription factor subtypes in patients with SCLC. BM-free patients at diagnosis with A+/N- or A-/N+ subtypes had worse outcomes compared with those with transcriptional factor coexpression. Further investigation into the mechanisms and implications of SCLC subtyping on CNS-specific outcomes is warranted to ultimately guide personalized care.


Assuntos
Neoplasias Encefálicas , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia , Carcinoma de Pequenas Células do Pulmão/secundário , Masculino , Feminino , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/mortalidade , Pessoa de Meia-Idade , Prognóstico , Idoso , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Adulto , Idoso de 80 Anos ou mais , Neoplasias do Sistema Nervoso Central/secundário , Neoplasias do Sistema Nervoso Central/genética , Estudos Retrospectivos
4.
bioRxiv ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38645034

RESUMO

Targeting cell surface molecules using radioligand and antibody-based therapies has yielded considerable success across cancers. However, it remains unclear how the expression of putative lineage markers, particularly cell surface molecules, varies in the process of lineage plasticity, wherein tumor cells alter their identity and acquire new oncogenic properties. A notable example of lineage plasticity is the transformation of prostate adenocarcinoma (PRAD) to neuroendocrine prostate cancer (NEPC)--a growing resistance mechanism that results in the loss of responsiveness to androgen blockade and portends dismal patient survival. To understand how lineage markers vary across the evolution of lineage plasticity in prostate cancer, we applied single cell analyses to 21 human prostate tumor biopsies and two genetically engineered mouse models, together with tissue microarray analysis (TMA) on 131 tumor samples. Not only did we observe a higher degree of phenotypic heterogeneity in castrate-resistant PRAD and NEPC than previously anticipated, but also found that the expression of molecules targeted therapeutically, namely PSMA, STEAP1, STEAP2, TROP2, CEACAM5, and DLL3, varied within a subset of gene-regulatory networks (GRNs). We also noted that NEPC and small cell lung cancer (SCLC) subtypes shared a set of GRNs, indicative of conserved biologic pathways that may be exploited therapeutically across tumor types. While this extreme level of transcriptional heterogeneity, particularly in cell surface marker expression, may mitigate the durability of clinical responses to novel antigen-directed therapies, its delineation may yield signatures for patient selection in clinical trials, potentially across distinct cancer types.

5.
Mod Pathol ; 37(5): 100453, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38387831

RESUMO

Non-small cell lung carcinomas (NSCLCs) commonly present as 2 or more separate tumors. Biologically, this encompasses 2 distinct processes: separate primary lung carcinomas (SPLCs), representing independently arising tumors, and intrapulmonary metastases (IPMs), representing intrapulmonary spread of a single tumor. The advent of computed tomography imaging has substantially increased the detection of multifocal NSCLCs. The strategies and approaches for distinguishing between SPLCs and IPMs have evolved significantly over the years. Recently, genomic sequencing of somatic mutations has been widely adopted to identify targetable alterations in NSCLC. These molecular techniques have enabled pathologists to reliably discern clonal relationships among multiple NSCLCs in clinical practice. However, a standardized approach to evaluating and staging multiple NSCLCs using molecular methods is still lacking. Here, we reviewed the historical context and provided an update on the growing applications of genomic testing as a clinically relevant benchmark for determining clonal relationships in multiple NSCLCs, a practice we have designated "comparative molecular profiling." We examined the strengths and limitations of the morphology-based distinction of SPLCs vs IPMs and highlighted pivotal clinical and pathologic insights that have emerged from studying multiple NSCLCs using genomic approaches as a gold standard. Lastly, we suggest a practical approach for evaluating multiple NSCLCs in the clinical setting, considering the varying availability of molecular techniques.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Estadiamento de Neoplasias , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Biomarcadores Tumorais/genética
6.
Clin Cancer Res ; 30(9): 1708-1711, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38416596

RESUMO

Small-cell lung carcinoma (SCLC) cell lines have been widely utilized as a preclinical model of this highly aggressive disease. However, since their creation decades ago, novel tumor entities have been defined that might clinicopathologically mimic SCLC, which notably includes thoracic SMARCA4-deficient undifferentiated tumor (SMARCA4-UT). Multiomic reassessment of the presumed SCLC cell lines with high YAP1 expression reveals that nearly all of these tumors represent unsuspected SMARCA4-UT. See related article by Ng et al., p. 1846.


Assuntos
DNA Helicases , Neoplasias Pulmonares , Proteínas Nucleares , Carcinoma de Pequenas Células do Pulmão , Fatores de Transcrição , Humanos , DNA Helicases/genética , DNA Helicases/deficiência , Carcinoma de Pequenas Células do Pulmão/diagnóstico , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/deficiência , Proteínas Nucleares/genética , Proteínas Nucleares/deficiência , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Diagnóstico Diferencial , Neoplasias Torácicas/diagnóstico , Neoplasias Torácicas/genética , Neoplasias Torácicas/patologia , Linhagem Celular Tumoral
7.
Mod Pathol ; 37(3): 100420, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38185249

RESUMO

9p21 deletions involving MTAP/CDKN2A genes are detected in diffuse pleural mesotheliomas (DPM) but are absent in benign mesothelial proliferations. Loss of MTAP expression by immunohistochemistry (IHC) is well accepted as a surrogate for 9p21 deletion to support a diagnosis of DPM. Accurate interpretation can be critical in the diagnosis of DPM, but variations in antibody performance may impact interpretation. The objectives of this study were to compare the performance of MTAP monoclonal antibodies (mAbs) EPR6893 and 1813 and to compare MTAP expression by IHC with 9p21 copy number status in DPM. Cytoplasmic expression of MTAP IHC with mAbs EPR6893 (ab126770; Abcam) and 1813 (NBP2-75730, Novus Biologicals) was evaluated in 56 DPM (47 epithelioid, 7 biphasic, and 2 sarcomatoid) profiled by targeted next-generation sequencing. 9p21 Copy number status was assessed by Fraction and Allele-Specific Copy Number Estimates from Tumor Sequencing (FACETS) analysis and also by CDKN2A fluorescence in situ hybridization in discrepant cases when material was available. MTAP mAb 1813 showed stronger immunoreactivity, more specific staining, and no equivocal interpretations compared to mAb EPR6893 which showed equivocal staining in 19 (34%) of cases due to weak or heterogenous immunoreactivity, lack of definitive internal positive control, and/or nonspecific background staining. MTAP expression with mAb 1813 showed near perfect agreement with 9p21 copy number by combined FACETS/fluorescence in situ hybridization calls (κ = 0.85; 95% CI, 0.71-0.99; P < .001). MTAP IHC with mAb 1813 was 96% sensitive, 86% specific, and 93% accurate for 9p21 homozygous deletion. The findings of this study suggest that interpretation of MTAP IHC is improved with mAb 1813 because mAb EPR6893 was often limited by equivocal interpretations. We show that MTAP IHC and molecular assays are complementary in detecting 9p21 homozygous deletion. MTAP IHC may be particularly useful for low tumor purity samples and in low-resource settings.


Assuntos
Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurais , Humanos , Biomarcadores Tumorais/análise , Inibidor p16 de Quinase Dependente de Ciclina/genética , Sequenciamento de Nucleotídeos em Larga Escala , Homozigoto , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Mesotelioma/diagnóstico , Mesotelioma/genética , Mesotelioma/patologia , Mesotelioma Maligno/genética , Neoplasias Pleurais/diagnóstico , Neoplasias Pleurais/genética , Neoplasias Pleurais/patologia , Deleção de Sequência , Ubiquitina Tiolesterase/genética
8.
medRxiv ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38260492

RESUMO

Background: Delta-like ligand 3 (DLL3) is aberrantly expressed on the cell surface in many neuroendocrine cancers including small cell lung cancer (SCLC) and neuroendocrine prostate cancer (NEPC). Several therapeutic agents targeting DLL3 are in active clinical development. Molecular imaging of DLL3 would enable non-invasive diagnostic assessment to inform the use of DLL3-targeting therapeutics or to assess disease treatment response. Methods: We conducted a first-in-human immuno-positron emission tomography (immunoPET) imaging study of [89Zr]Zr-DFO-SC16.56, composed of the anti-DLL3 antibody SC16.56 conjugated to desferrioxamine (DFO) and the positron-emitting radionuclide zirconium-89, in 18 patients with neuroendocrine cancers. An initial cohort of three patients received 1-2 mCi of [89Zr]Zr-DFO-SC16.56 at a total mass dose of 2·5 mg and underwent serial PET and computed tomography (CT) imaging over the course of one week. Radiotracer clearance, tumor uptake, and radiation dosimetry were estimated. An expansion cohort of 15 additional patients were imaged using the initial activity and mass dose. Retrospectively collected tumor biopsies were assessed for DLL3 by immunohistochemistry (IHC) (n = 16). Findings: Imaging of the initial 3 SCLC patients demonstrated strong tumor-specific uptake of [89Zr]Zr-DFO-SC16.56, with similar tumor: background ratios at days 3, 4, and 7 post-injection. Serum clearance was bi-phasic with an estimated terminal clearance half-time of 119 h. The sites of highest background tracer uptake were blood pool and liver. The normal tissue receiving the highest radiation dose was liver; 1·8 mGy/MBq, and the effective dose was 0.49 mSv/MBq. Tumoral uptake varied both between and within patients, and across anatomic sites, with a wide range in SUVmax (from 3·3 to 66·7). Tumor uptake by [89Zr]Zr-DFO-SC16.56 was associated with protein expression in all cases. Two non-avid DLL3 NEPC cases by PET scanning demonstrated the lowest DLL3 expression by tumor immunohistochemistry. Only one patient had a grade 1 allergic reaction, while no grade ≥2 adverse events noted. Interpretation: DLL3 PET imaging of patients with neuroendocrine cancers is safe and feasible. These results demonstrate the potential utility of [89Zr]Zr-DFO-SC16.56 for non-invasive in vivo detection of DLL3-expressing malignancies. Funding: Supported by NIH R01CA213448 (JTP), R35 CA263816 (CMR), U24 CA213274 (CMR), R35 CA232130 (JSL), and a Prostate Cancer Foundation TACTICAL Award (JSL), Scannell foundation. The Radiochemistry and Molecular Imaging Probes Core Facility is supported by NIH P30 CA08748.

9.
J Thorac Oncol ; 19(2): 273-284, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37717856

RESUMO

INTRODUCTION: Morphologic and molecular data for staging of multifocal lung squamous cell carcinomas (LSCCs) are limited. In this study, whole exome sequencing (WES) was used as the gold standard to determine whether multifocal LSCC represented separate primary lung cancers (SPLCs) or intrapulmonary metastases (IPMs). Genomic profiles were compared with the comprehensive morphologic assessment. METHODS: WES was performed on 20 tumor pairs of multifocal LSCC and matched normal lymph nodes using the Illumina NovaSeq6000 S4-Xp (Illumina, San Diego, CA). WES clonal and subclonal analysis data were compared with histologic assessment by 16 thoracic pathologists. In addition, the immune gene profiling of the study cases was characterized by the HTG EdgeSeq Precision Immuno-Oncology Panel. RESULTS: By WES data, 11 cases were classified as SPLC and seven cases as IPM. Two cases were technically suboptimal. Analysis revealed marked genomic and immunogenic heterogeneity, but immune gene expression profiles highly correlated with mutation profiles. Tumors classified as IPM have a large number of shared mutations (ranging from 33.5% to 80.7%). The agreement between individual morphologic assessments for each case and WES was 58.3%. One case was unanimously interpreted morphologically as IPM and was in agreement with WES. In a further 17 cases, the number of pathologists whose morphologic interpretation was in agreement with WES ranged from two (one case) to 15 pathologists (one case) per case. Pathologists showed a fair interobserver agreement in the morphologic staging of multiple LSCCs, with an overall kappa of 0.232. CONCLUSIONS: Staging of multifocal LSCC based on morphologic assessment is unreliable. Comprehensive genomic analyses should be adopted for the staging of multifocal LSCC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/secundário , Genômica , Pulmão/patologia
10.
Am J Surg Pathol ; 47(11): 1243-1251, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37494548

RESUMO

Adamantinoma-like Ewing sarcoma (ALES) is a rare malignancy currently considered a variant of Ewing sarcoma with most known cases harboring EWSR1 rearrangements. Herein we present a series of 6 cases of EWSR1 -negative ALES. The tumors arose in the sinonasal tract (n=3), major salivary glands (submandibular gland=1; parotid=1), and anterior mediastinum (n=1) in patients ranging from 25 to 79 years of age. Most tumors were basaloid in appearance, growing in large nests separated by interlobular fibrosis without overt squamous pearls. However, 1 case closely resembled a well-differentiated neuroendocrine tumor with uniformly round nuclei, eosinophilic cytoplasm, and trabecular architecture. All cases were diffusely positive for pan-cytokeratin, p40 or p63, and CD99. A subset of cases showed diffuse reactivity for synaptophysin, including 1 sinonasal tumor which also demonstrated sustentacular S100 protein expression. Molecular testing showed FUS rearrangements in all cases. Gene partners included known ETS family members FEV (n=2) and FLI1 (n=1). Our results expand the molecular diagnostic considerations for ALES to include FUS rearrangements. We also show that ALES may harbor FUS :: FLI1 fusion, which has not been previously reported in the Ewing family of tumors. Furthermore, ALES may show unusual histologic and immunophenotypic features that can overlap with olfactory carcinoma including S100-positive sustentacular cells. ALES should be considered in the diagnostic differential of small round cell tumors and tumors with neuroendocrine differentiation with immunohistochemical workup to include p40 and CD99/NKX2.2.


Assuntos
Adamantinoma , Tumores Neuroectodérmicos Primitivos Periféricos , Sarcoma de Ewing , Sarcoma , Humanos , Sarcoma de Ewing/diagnóstico , Sarcoma de Ewing/genética , Sarcoma de Ewing/patologia , Adamantinoma/genética , Adamantinoma/patologia , Proteína EWS de Ligação a RNA/genética , Sarcoma/genética , Biomarcadores Tumorais/genética , Proteínas de Fusão Oncogênica/genética , Proteína FUS de Ligação a RNA
11.
Cancer Cytopathol ; 131(8): 526-534, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37278102

RESUMO

INTRODUCTION: Although alterations in SMARCA4-deficient occur in non-small cell lung carcinoma (SD-NSCLC), thoracic SMARCA4-deficient undifferentiated tumor (TSDUT) is recognized as a distinct entity in the 2021 World Health Organization Classification of Thoracic Tumors because of unique morphologic, immunophenotypic and molecular features, and worse survival compared with SD-NSCLC. Cytologic diagnosis of TSDUT is clinically important because of its aggressive behavior and because it is often diagnosed by fine-needle aspiration because TSDUTs are usually unresectable at presentation. Here, we identify cytologic features that can be used for recognition of TSDUT and distinction from SD-NSCLC. MATERIALS AND METHODS: Cytomorphologic features were investigated in cytology specimens from patients with TSDUT (n = 11) and compared with a control group of patients with SD-NSCLC (n = 20). RESULTS: The presence of classic rhabdoid morphology, at least focally, was entirely specific for TSDUT (n = 6, 55%) compared with SD-NSCLC (n = 0) in this study. TSDUT more frequently showed tumor necrosis (n = 11, 100% vs. n = 8, 40%; p = .001), dominant single-cell pattern on aspirate smears or touch preparation slides (n = 8 [of 9], 80% vs. n = 3, 15%; p = .010), nuclear molding (n = 5, 45% vs. n = 1, 5%; p = .013), and indistinct cell borders (n = 11, 100% vs. n = 5, 25%; P < .001) compared with SD-NSCLC, respectively. CONCLUSIONS: Cytomorphologic features occurring more frequently in TSDUT include tumor necrosis, dominant single-cell pattern, nuclear molding indistinct cell borders, and focal rhabdoid cells. Presence of these features in a cytology specimen of an undifferentiated tumor, particularly in a patient with a thoracic mass, should raise suspicion for TSDUT and prompt appropriate ancillary workup.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Neoplasias Torácicas , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Neoplasias Torácicas/diagnóstico , Neoplasias Torácicas/patologia , Técnicas Citológicas , Neoplasias Pulmonares/diagnóstico , Necrose , Biomarcadores Tumorais , DNA Helicases , Proteínas Nucleares , Fatores de Transcrição
12.
bioRxiv ; 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37131623

RESUMO

LKB1/STK11 is a serine/threonine kinase that plays a major role in controlling cell metabolism, resulting in potential therapeutic vulnerabilities in LKB1-mutant cancers. Here, we identify the NAD + degrading ectoenzyme, CD38, as a new target in LKB1-mutant NSCLC. Metabolic profiling of genetically engineered mouse models (GEMMs) revealed that LKB1 mutant lung cancers have a striking increase in ADP-ribose, a breakdown product of the critical redox co-factor, NAD + . Surprisingly, compared with other genetic subsets, murine and human LKB1-mutant NSCLC show marked overexpression of the NAD+-catabolizing ectoenzyme, CD38 on the surface of tumor cells. Loss of LKB1 or inactivation of Salt-Inducible Kinases (SIKs)-key downstream effectors of LKB1- induces CD38 transcription induction via a CREB binding site in the CD38 promoter. Treatment with the FDA-approved anti-CD38 antibody, daratumumab, inhibited growth of LKB1-mutant NSCLC xenografts. Together, these results reveal CD38 as a promising therapeutic target in patients with LKB1 mutant lung cancer. SIGNIFICANCE: Loss-of-function mutations in the LKB1 tumor suppressor of lung adenocarcinoma patients and are associated with resistance to current treatments. Our study identified CD38 as a potential therapeutic target that is highly overexpressed in this specific subtype of cancer, associated with a shift in NAD homeostasis.

13.
Cancer Cytopathol ; 131(8): 495-506, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37127928

RESUMO

BACKGROUND: The World Health Organization incorporates morphologic features with prognostic significance in the 2021 classification of epithelioid diffuse pleural mesothelioma (E-DPM). Although cytology specimens are often the first and occasionally the only specimen available for patients with DPM, these features have not yet been investigated in cytology. METHODS: Nuclear atypia, pleomorphic features, necrosis, and architectural patterns were retrospectively assessed in 35 paired cytology and concurrent/consecutive surgical pathology specimens of E-DPM. Agreement between pairs was determined via unweighted κ scores. Discordant cases were re-reviewed to determine the reasons for disagreement. RESULTS: Interpretation of nuclear atypia in cytology was concordant with histology in all cases (κ = 1.000; p < .001). The presence of pleomorphic features and necrosis was concordant in 97.1% (κ = 0.842; p < .001) and 85.7% (κ = 0.481; p = .001) of paired cases, respectively. Assessment of architectural patterns in cytology showed only slight agreement with histology (κ = 0.127; p = .037). In cytology cases (n = 23) with cell block material available, assessment of nuclear atypia and the presence of pleomorphic features showed perfect agreement (κ = 1.000; p < .001, each), the presence of necrosis showed moderate agreement (κ = 0.465; p = .008), and assessment of architectural patterns showed slight agreement (κ = 0.162; p = .15) in paired specimens. Most disagreements were due to sampling differences between cytology and histology specimens. CONCLUSIONS: Although complete nuclear grading of E-DPM is not possible given the unreliability of mitotic counts in cytology, assessment of nuclear atypia in cytology specimens is shown to be reliable. Identification of pleomorphic features and necrosis is also reliable despite occasional sampling issues. Assessment of architectural patterns is more limited in cytology.


Assuntos
Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurais , Humanos , Prognóstico , Mesotelioma/diagnóstico , Mesotelioma/patologia , Estudos Retrospectivos , Reprodutibilidade dos Testes , Necrose , Neoplasias Pleurais/diagnóstico , Neoplasias Pleurais/patologia
14.
Nat Med ; 29(4): 833-845, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37045996

RESUMO

Lung adenocarcinomas (LUADs) display a broad histological spectrum from low-grade lepidic tumors through to mid-grade acinar and papillary and high-grade solid, cribriform and micropapillary tumors. How morphology reflects tumor evolution and disease progression is poorly understood. Whole-exome sequencing data generated from 805 primary tumor regions and 121 paired metastatic samples across 248 LUADs from the TRACERx 421 cohort, together with RNA-sequencing data from 463 primary tumor regions, were integrated with detailed whole-tumor and regional histopathological analysis. Tumors with predominantly high-grade patterns showed increased chromosomal complexity, with higher burden of loss of heterozygosity and subclonal somatic copy number alterations. Individual regions in predominantly high-grade pattern tumors exhibited higher proliferation and lower clonal diversity, potentially reflecting large recent subclonal expansions. Co-occurrence of truncal loss of chromosomes 3p and 3q was enriched in predominantly low-/mid-grade tumors, while purely undifferentiated solid-pattern tumors had a higher frequency of truncal arm or focal 3q gains and SMARCA4 gene alterations compared with mixed-pattern tumors with a solid component, suggesting distinct evolutionary trajectories. Clonal evolution analysis revealed that tumors tend to evolve toward higher-grade patterns. The presence of micropapillary pattern and 'tumor spread through air spaces' were associated with intrathoracic recurrence, in contrast to the presence of solid/cribriform patterns, necrosis and preoperative circulating tumor DNA detection, which were associated with extra-thoracic recurrence. These data provide insights into the relationship between LUAD morphology, the underlying evolutionary genomic landscape, and clinical and anatomical relapse risk.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Adenocarcinoma/genética , Adenocarcinoma/patologia , Recidiva Local de Neoplasia/patologia , Adenocarcinoma de Pulmão/genética , Progressão da Doença , DNA Helicases , Proteínas Nucleares , Fatores de Transcrição
15.
Nat Rev Clin Oncol ; 20(1): 16-32, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36307533

RESUMO

Neuroendocrine neoplasms (NENs) can develop in almost any organ and span a spectrum from well-differentiated and indolent neuroendocrine tumours (NETs) to poorly differentiated and highly aggressive neuroendocrine carcinomas (NECs), including small-cell lung cancer (SCLC). These neoplasms are thought to primarily derive from neuroendocrine precursor cells located throughout the body and can also arise through neuroendocrine transdifferentiation of organ-specific epithelial cell types. Hence, NENs constitute a group of tumour types that share key genomic and phenotypic characteristics irrespective of their site of origin, albeit with some organ-specific differences. The establishment of representative preclinical models for several of these disease entities together with analyses of human tumour specimens has provided important insights into crucial aspects of their biology with therapeutic implications. In this Review, we provide a comprehensive overview of the current understanding of NENs of the gastrointestinal system and lung from clinical and biological perspectives. Research on NENs has typically been siloed by the tumour site of origin, and a cross-cutting view might enable advances in one area to accelerate research in others. Therefore, we aim to emphasize that a better understanding of the commonalities and differences of NENs arising in different organs might more effectively inform clinical research to define therapeutic targets and ultimately optimize patient care.


Assuntos
Carcinoma Neuroendócrino , Neoplasias Gastrointestinais , Neoplasias Pulmonares , Tumores Neuroendócrinos , Neoplasias Pancreáticas , Carcinoma de Pequenas Células do Pulmão , Humanos , Tumores Neuroendócrinos/patologia , Neoplasias Pulmonares/patologia , Pulmão/metabolismo , Pulmão/patologia , Biologia , Neoplasias Pancreáticas/patologia
16.
J Thorac Oncol ; 18(4): 463-475, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36494075

RESUMO

INTRODUCTION: Preferred first-line treatment for patients with metastatic EGFR-mutant lung cancer is osimertinib, yet it is not known whether patient outcomes may be improved by identifying and intervening on molecular markers associated with therapeutic resistance. METHODS: All patients with metastatic EGFR-mutant lung cancer treated with first-line osimertinib at the Memorial Sloan Kettering Cancer Center (n = 327) were identified. Available pretreatment and postprogression tumor samples underwent targeted gene panel sequencing and mutational signature analysis using SigMA algorithm. Progression-free survival (PFS) and overall survival were estimated using the Kaplan-Meier method. RESULTS: Using multivariate analysis, baseline atypical EGFR (median PFS = 5.8 mo, p < 0.001) and concurrent TP53/RB1 alterations (median PFS = 10.5 mo, p = 0.015) were associated with shorter PFS on first-line osimertinib. Of 95 patients with postprogression biopsies, acquired resistance mechanisms were identified in 52% (off-target, n = 24; histologic transformation, n = 14; on-target, n = 12), with MET amplification (n = 9), small cell lung transformation (n = 7), and acquired EGFR amplification (n = 7), the most frequently identified mechanisms. Although there was no difference in postprogression survival on the basis of identified resistance (p = 0.07), patients with subsequent second-line therapy tailored to postprogression biopsy results had improved postprogression survival (hazard ratio = 0.09, p = 0.006). The paired postprogression tumors had higher tumor mutational burden (p = 0.008) and further dominant APOBEC mutational signatures (p = 0.07) compared with the pretreatment samples. CONCLUSIONS: Patients with EGFR-mutant lung cancer treated with first-line osimertinib have improved survival with treatment adaptation on the basis of identified mechanisms of resistance at time of progression using tissue-based genomic analysis. Further survival gains may be achieved using risk-based treatment adaptation of pretreatment genomic alterations.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , Inibidores de Proteínas Quinases , Humanos , Biomarcadores , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Receptores ErbB/genética , Receptores ErbB/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
17.
Histopathology ; 82(2): 242-253, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36130728

RESUMO

Thyroid transcription factor 1 (TTF1) and p40 are widely-utilized diagnostic markers of lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC), respectively. Diffuse coexpression of TTF1 and p40 has been described in only rare case reports. In a multi-institutional study, we collected the largest cohort of these unusual tumours to-date (n = 14), with the goal of elucidating their clinicopathological and genomic characteristics. Lung tumours with diffuse coexpression (labelling 50-100% tumour cells) of TTF1 clone 8G7G3/1 and p40 clone BC28 were identified. Detailed clinicopathological and immunohistochemical parameters were analyzed. Eight tumours were analyzed by next-generation sequencing (NGS) and the results were compared to those in > 9 K LUAD and > 1 K LUSC. All tumours with diffuse TTF1/p40 coexpression were poorly differentiated non-small cell lung carcinomas (NSCLC), 42% of which had basaloid features. Some tumours exhibited focal keratinization (14%), napsin A and/or mucicarmine labelling (46%) or both squamous and glandular features (7%). NGS revealed a uniquely high rate of FGFR1 amplifications (70%) compared to either LUAD (0.7%, P < 0.0001) or LUSC (11%, P = 0.001). LUAD-type targetable driver alterations were identified in 38% of cases (one EGFR, two KRAS G12C). The tumours were clinically aggressive, exhibiting metastatic disease in most patients. Lung carcinomas with diffuse TTF1/p40 coexpression represent poorly differentiated NSCLCs with frequent basaloid features, but some show evidence of focal squamous, glandular or dual differentiation with a distinctly high rate of FGFR1 amplifications. The presence of targetable LUAD-type alterations (EGFR, KRAS G12C) emphasizes the importance of molecular testing in these tumours.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Fator Nuclear 1 de Tireoide , Carcinoma Pulmonar de Células não Pequenas/genética , Genômica , Neoplasias Pulmonares/genética , Carcinoma de Células Escamosas/genética , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética
18.
Nat Med ; 28(11): 2353-2363, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36357680

RESUMO

Circulating tumor DNA (ctDNA) sequencing guides therapy decisions but has been studied mostly in small cohorts without sufficient follow-up to determine its influence on overall survival. We prospectively followed an international cohort of 1,127 patients with non-small-cell lung cancer and ctDNA-guided therapy. ctDNA detection was associated with shorter survival (hazard ratio (HR), 2.05; 95% confidence interval (CI), 1.74-2.42; P < 0.001) independently of clinicopathologic features and metabolic tumor volume. Among the 722 (64%) patients with detectable ctDNA, 255 (23%) matched to targeted therapy by ctDNA sequencing had longer survival than those not treated with targeted therapy (HR, 0.63; 95% CI, 0.52-0.76; P < 0.001). Genomic alterations in ctDNA not detected by time-matched tissue sequencing were found in 25% of the patients. These ctDNA-only alterations disproportionately featured subclonal drivers of resistance, including RICTOR and PIK3CA alterations, and were associated with short survival. Minimally invasive ctDNA profiling can identify heterogeneous drivers not captured in tissue sequencing and expand community access to life-prolonging therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , DNA Tumoral Circulante , Neoplasias Pulmonares , Humanos , DNA Tumoral Circulante/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Biomarcadores Tumorais/genética , Mutação , Sequenciamento de Nucleotídeos em Larga Escala
19.
Sci Transl Med ; 14(665): eabo1050, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36197962

RESUMO

About 50% of patients with early-stage, surgically resected lung cancer will develop distant metastasis. There remains an unmet need to identify patients likely to develop recurrence and to design innovative therapies to decrease this risk. Two primary isoforms of BRMS1, v1 and v2, are present in humans. Using next-generation sequencing of BRMS1 on matched human noncancerous lung tissue and non-small cell lung cancer (NSCLC) specimens, we identified single-nucleotide polymorphism (SNP) rs1052566 that results in an A273V mutation of BRMS1v2. This SNP is homozygous (BRMS1v2A273V/A273V) in 8% of the population and correlates with aggressive biology in lung adenocarcinoma (LUAD). Mechanistically, we show that BRMS1v2 A273V abolishes the metastasis suppressor function of BRMS1v2 and promotes robust cell invasion and metastases by activation of c-fos-mediated gene-specific transcriptional regulation. BRMS1v2 A273V increases cell invasion in vitro and increases metastases in both tail-vein injection xenografts and LUAD patient-derived organoid (PDO) intracardiac injection metastasis in vivo models. Moreover, we show that BRMS1v2 A273V fails to interact with nuclear Src, thereby activating intratumoral c-fos in vitro. Higher c-fos results in up-regulation of CEACAM6, which drives metastases in vitro and in vivo. Using both xenograft and PDO metastasis models, we repurposed T5224 for treatment, a c-fos pharmacologic inhibitor investigated in clinical trials for arthritis, and observed suppression of metastases in BRMS1v2A273V/A273V LUAD in mice. Collectively, we elucidate the mechanism of BRMS1v2A273V/A273V-induced metastases and offer a putative therapeutic strategy for patients with LUAD who have this germline alteration.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Humanos , Camundongos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Células Germinativas , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas Repressoras/metabolismo , Polimorfismo de Nucleotídeo Único
20.
Adv Anat Pathol ; 29(6): 329-336, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36053019

RESUMO

Pulmonary neuroendocrine neoplasms comprise ~20% of all lung tumors. Typical carcinoid, atypical carcinoid, small cell carcinoma, and large cell neuroendocrine carcinoma represent the 4 major distinct subtypes recognized on resections. This review provides a brief overview of the cytomorphologic features and the 2021 World Health Organization classification of these tumor types on small biopsy and cytology specimens. Also discussed are the role of immunohistochemistry in the diagnosis and molecular signatures of pulmonary neuroendocrine tumors.


Assuntos
Tumor Carcinoide , Carcinoma Neuroendócrino , Neoplasias Pulmonares , Tumores Neuroendócrinos , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/patologia , Carcinoma Neuroendócrino/patologia , Tumor Carcinoide/diagnóstico , Tumor Carcinoide/patologia , Tumores Neuroendócrinos/diagnóstico , Tumores Neuroendócrinos/patologia , Biópsia , Organização Mundial da Saúde
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA