Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 132(2): 541-552, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34989649

RESUMO

Extended tourniquet application, often associated with battlefield extremity trauma, can lead to severe ischemia-reperfusion (I/R) injury in skeletal muscle. Particulate oxygen generators (POGs) can be directly injected into tissue to supply oxygen to attenuate the effects of I/R injury in muscle. The goal of this study was to investigate the efficacy of a sodium percarbonate (SPO)-based POG formulation in reducing ischemic damage in a rat hindlimb during tourniquet application. Male Lewis rats were anesthetized and underwent tourniquet application for 3 h at a pressure of 300 mmHg. Shortly after tourniquet inflation, animals received intramuscular injections of either 0.2 mg/mL SPO with catalase (n = 6) or 2.0 mg/mL SPO with catalase (n = 6) directly into the tibialis anterior (TA) muscle. An additional Tourniquet-Only group (n = 12) received no intervention. Functional recovery was monitored by in vivo contractile testing of the hindlimb at 1, 2, and 4 wk after injury. By the 4 wk time point, the Low-Dose POG group continued to show improved functional recovery (85% of baseline) compared with the Tourniquet-Only (48%) and High-Dose POG (56%) groups. In short, the low-dose POG formulation appeared, at least in part, to mitigate the impact of ischemic tissue injury, thus improving contractile function after tourniquet application. Functional improvement correlated with maintenance of larger muscle fiber cross-sectional area and the presence of fewer fibers containing centrally located nuclei. As such, POGs represent a potentially attractive therapeutic solution for addressing I/R injuries associated with extremity trauma.NEW & NOTEWORTHY Skeletal muscle contraction was evaluated in the same animals at multiple time points up to 4 wk after injury, following administration of particulate oxygen generators (POGs) in a clinically relevant rat hindlimb model of tourniquet-induced ischemia. The observed POG-mediated improvement of muscle function over time confirms and extends previous studies to further document the potential clinical applications of POGs. Of particular significance in austere environments, this technology can be applied in the absence of an intact circulation.


Assuntos
Traumatismo por Reperfusão , Animais , Membro Posterior , Masculino , Contração Muscular , Músculo Esquelético , Oxigênio/farmacologia , Ratos , Ratos Endogâmicos Lew , Torniquetes
2.
J Biomech ; 85: 118-125, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30718065

RESUMO

Volumetric muscle loss injuries (VML) are challenging to treat because of the variability in wound location. Regenerative medicine offers promising alternative treatments, but there is little understanding of the correlation between magnitude of VML injuries and corresponding functional deficits that must be addressed. There is a need for a tool that can elucidate the relationship between VML injury and force loss, as well as the impact on specific mechanisms responsible for force production. The purpose of this study was to develop a novel coupled framework of in situ and in silico methods to more precisely understand the relationship between injury location and force production deficits. We created a three-dimensional finite-element model of the pennate latissimus dorsi (LD) muscle in the rat and validated the model experimentally. We found that the model's prediction (2.6 N/g Model I, 2.1 N/g Model V) compared favorably to in situ testing of isometric force generation of the injured rat LD muscle (2.8 ±â€¯0.3 N/g Experimental I, 2.0 ±â€¯0.2 N/g Experimental V). Further model analysis revealed that the contribution from lateral and longitudinal force transmission to the total force varied with injury location and led to a greater understanding of the mechanisms responsible for VML-related force deficits. In the future, the coupled computational and experimental framework can be used to inform development of preclinical VML injury models that better recapitulate the spectrum of VML injuries observed in affected patients, and the mechanistic insight can accelerate the creation of improved regenerative therapeutics for VML injuries.


Assuntos
Músculo Esquelético/lesões , Músculo Esquelético/fisiologia , Animais , Simulação por Computador , Humanos , Ratos , Regeneração , Medicina Regenerativa , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA