RESUMO
Cancer patients undergoing therapeutic radiation routinely develop injury of the adjacent gastrointestinal (GI) tract mucosa due to treatment. To reduce radiation dose to critical GI structures including the rectum and oral mucosa, 3D-printed GI radioprotective devices composed of high-Z materials are generated from patient CT scans. In a radiation proctitis rat model, a significant reduction in crypt injury is demonstrated with the device compared to without (p < 0.0087). Optimal device placement for radiation attenuation is further confirmed in a swine model. Dosimetric modeling in oral cavity cancer patients demonstrates a 30% radiation dose reduction to the normal buccal mucosa and a 15.2% dose reduction in the rectum for prostate cancer patients with the radioprotectant material in place compared to without. Finally, it is found that the rectal radioprotectant device is more cost-effective compared to a hydrogel rectal spacer. Taken together, these data suggest that personalized radioprotectant devices may be used to reduce GI tissue injury in cancer patients undergoing therapeutic radiation.
Assuntos
Trato Gastrointestinal/efeitos da radiação , Neoplasias Bucais/radioterapia , Impressão Tridimensional , Lesões por Radiação/prevenção & controle , Proteção Radiológica/instrumentação , Proteção Radiológica/métodos , Animais , Modelos Animais de Doenças , Trato Gastrointestinal/diagnóstico por imagem , Humanos , Mucosa/diagnóstico por imagem , Mucosa/efeitos da radiação , Órgãos em Risco , Ratos , Ratos Sprague-Dawley , Suínos , Tomografia Computadorizada por Raios XRESUMO
PURPOSE: This study aimed to assess the safety and efficacy of administering liver reirradiation to patients with primary liver tumors or liver metastasis. METHODS AND MATERIALS: A total of 49 patients (with 64 individual tumors) who received liver reirradiation at our institution between June 2008 and December 2016 were identified for retrospective review. Patients were treated to the same, different, or a combination of previously treated liver tumors for recurrent primary (53%) or metastatic (47%) disease using photons or protons. Clinical and treatment-related factors were compiled and patients were monitored for toxicity and evidence of classic or nonclassic radiation-induced liver disease. Survival was estimated with the Kaplan-Meier method and cumulative incidence of local failure (LF) was used to estimate LF using the Response Evaluation Criteria in Solid Tumors version 1.1. RESULTS: The median age at the time of reirradiation was 72 years and the median interval between radiation courses was 9 months. At a median follow-up of 10.5 months, 36 patients (73%) had died, 9 patients (18%) were alive, and 4 patients (8%) were lost to follow-up. The median survival for the cohort was 14 months. The overall 1-year estimate of LF was 46.4%. The 1-year estimates of LF for liver metastases and hepatocellular carcinoma were 61.0% and 32.5%, respectively. The average prescription dose was similar between the reirradiation and initial courses (equivalent dose in 2 Gy fractions EQD2: 65.0 vs 64.3 Gyα/ß = 10, respectively) but the average dose to the untreated liver was lower at the time of reirradiation (EQD2: 10.5 vs 13.9 Gyα/ß = 3, respectively, P = .01). Among patients with hepatocellular carcinoma, the average normal liver dose was significantly larger for patients who exhibited a worsening of Child-Pugh score after reirradiation compared with those who did not (1210 cGy vs 759 cGy, P = .04). With regard to toxicity, 85.7% of patients experienced grade 1 to 2 toxicity, 4.1% developed grade 3, and only 2 patients (4.1%) met the criteria for radiation-induced liver disease after reirradiation. CONCLUSIONS: Liver reirradiation may be an effective and safe option for select patients; however, further prospective study is necessary to establish treatment guidelines and recommended dosing.