Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Endocrine ; 84(3): 1216-1228, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38273138

RESUMO

BACKGROUND: It is now well known that visfatin is expressed in the testis and ovary of various animals. Visfatin is known to regulate gonadal functions such as steroidogenesis, proliferation, and apoptosis in the ovary and testis of mice. Recently, we have shown that visfatin has an inhibitory role in the infantile mice testis. It has also been shown that visfatin stimulates testicular steroidogenesis in adult rats. However, the role of visfatin during puberty has not been investigated in relation to the above-mentioned process. OBJECTIVE: The objective of the present study was to examine the effect of visfatin inhibition by FK866 from PND25 to PND35 (pre-pubertal to early pubertal) in male Swiss albino mice on steroidogenesis, proliferation, and apoptosis. METHODS: Sixteen mice (25 days old) were divided into two groups, one group was given normal saline and the other group was administered with an inhibitor of visfatin (FK866) at the dose of 1.5 mg/kg by intraperitoneal injection for 10 days. Histopathological and immunohistochemical analysis, western blot analysis and hormonal assay were done. RESULTS: Visfatin inhibition resulted in increased estrogen secretion, body weight, seminiferous tubule diameter, germinal epithelium height, and proliferation along with increased expression of BCl2, casapse3, ERs and aromatase expression in the mice testis. Visfatin inhibition down-regulated the testicular visfatin expression and also decreased abundance in the adipose tissues. CONCLUSION: In conclusion, decreased AR expression and increased ERs expression by FK866, suggest that visfatin might have a stimulatory effect on AR signaling than ERs in the early pubertal stage of mice.


Assuntos
Acrilamidas , Nicotinamida Fosforribosiltransferase , Piperidinas , Receptores Androgênicos , Maturidade Sexual , Testículo , Animais , Masculino , Nicotinamida Fosforribosiltransferase/metabolismo , Camundongos , Testículo/efeitos dos fármacos , Testículo/metabolismo , Maturidade Sexual/efeitos dos fármacos , Maturidade Sexual/fisiologia , Receptores Androgênicos/metabolismo , Acrilamidas/farmacologia , Piperidinas/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Receptores de Estrogênio/metabolismo , Testosterona/sangue , Testosterona/farmacologia , Aromatase/metabolismo
2.
J Biochem Mol Toxicol ; 37(9): e23400, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37335250

RESUMO

Cadmium (Cd) is one of the heavy metal pollutants present in the environment due to human intervention. It is well known that Cd causes toxicological effects on various organs, including the testes. Morin hydrate is a plant-derived bioflavonoid with antioxidant, anti-inflammatory, and anti-stress properties. Thus, the question can be raised as to whether Morin has an effect on Cd-intoxication-induced testicular impairment. Therefore, the aim of this study was to investigate the role of Morin on Cd-mediated disruption of testicular activity. Mice were divided into three groups: group 1 served as the control group, group 2 was given Cd (10 mg/kg) orally for 35 days, and group 3 was given Cd and Morin hydrate (100 mg/kg) for 35 days. To validate the in vivo findings, an in vitro study on testicular explants was also performed. The results of the in vivo study showed that Cd-intoxicated mice had testicular disorganization, reduced circulating testosterone levels, decreased sperm density, and elevated oxidative stress and sperm abnormality. The expression of the germ cell proliferation marker, germ cell nuclear acidic protein (GCNA), and adipocytokine visfatin were also downregulated. It was observed that Morin hydrate upregulated testicular visfatin and GCNA expression in Cd-intoxicated mice, along with improvement in circulating testosterone, testicular histology, and sperm parameters. Furthermore, the in vitro study showed that Cd-mediated downregulation of testicular visfatin and GCNA expression, along with the suppressed secretion of testosterone from testicular explants, was normalized by Morin treatment, whereas visfatin expression was not. Overall, these data indicate that environmental cadmium exposure impairs testicular activity through downregulation of visfatin and GCNA expression, and Morin might play a protective role against Cd-induced testicular toxicity.


Assuntos
Intoxicação por Cádmio , Testículo , Humanos , Masculino , Camundongos , Animais , Testículo/metabolismo , Cádmio/toxicidade , Nicotinamida Fosforribosiltransferase/metabolismo , Nicotinamida Fosforribosiltransferase/farmacologia , Sêmen/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Estresse Oxidativo , Testosterona/farmacologia , Flavonoides/farmacologia , Flavonoides/metabolismo , Intoxicação por Cádmio/metabolismo , Proliferação de Células
3.
J Steroid Biochem Mol Biol ; 231: 106306, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37024018

RESUMO

Adipokines have emerged as regulators of gonadal function in many mammalian and non-mammalian species. In the present study, we have investigated the developmental expression of testicular and ovarian visfatin along with its possible role in the testicular activity infantile stages. Previously, our group has the extensive role of ovarian visfatin in relation to steroidogenesis, proliferation, and apoptosis in female mice. To the best of our knowledge, no study has shown the role of visfatin in mice testis. Our results from the previous study and present study showed that visfatin in the testis and ovaries are developmentally regulated. To unravel the role of visfatin, we have used FK866, as visfatin inhibitor. FK866 was used as a visfatin inhibitor, to decipher the role of visfatin in the testis of mice. Our results showed that visfatin expression in the testis was developmentally regulated in the testis. Leydig cells as well as germ have shown the presence of visfatin in mice testis, which suggest its role in testicular steroidogenesis and spermatogenesis. Furthermore, visfatin inhibition by FK866 significantly increased the testosterone secretion, and expression of AR, Bcl2, and ERα. The expression of GCNA was upregulated by FK866 treatment. These results suggest that visfatin has an inhibitory role in testicular steroidogenesis and germ cell proliferation in the infantile stage. Further research is required to define the precise role of visfatin in infantile mice testis.


Assuntos
Nicotinamida Fosforribosiltransferase , Testículo , Masculino , Camundongos , Feminino , Animais , Testículo/metabolismo , Células Intersticiais do Testículo/metabolismo , Espermatogênese , Ovário/metabolismo , Testosterona/metabolismo , Mamíferos/metabolismo
4.
J Exp Zool A Ecol Integr Physiol ; 337(6): 600-611, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35286779

RESUMO

d-galactose (DG)-induced rodent aging model has widely been used for the study of age-related dysfunctions of various organs, including gonads and uterus. Antidiabetic drug metformin has gained an attention as antiaging drug in model organism and human but its effect on uterus has not been studied in relation to induced aging. Therefore, we investigated the effect of metformin on uterus of DG-induced aging mice model. Mice were randomly divided into three groups, that is, control (CN), DG-induced aging model and aging model treated with metformin. Histomorphometric results showed significantly decreased number of uterine glands, endometrial thickness, and increased luminal epithelium height in aging model. Furthermore, metformin resumed the number of uterine glands, endometrial thickness, and luminal epithelium height up to CN group. Metformin has also significantly decreased the age-associated oxidative stress (malondialdehyde and lipid hydroperoxide). Superoxide dismutase was significantly decreased in both treated groups compared to the CN group. However, catalase and glutathione peroxidase enzymes were significantly increased by metformin compared to the aging model. Immunostaining of active caspase3 and BAX were intense in the endometrium of aging model compare to CN- and metformin-treated groups. Localization of B-cell lymphoma 2 (Bcl2) showed intense immunostaining in the uterus of CN- and metformin-treated groups, with mild immunostaining in aging model. Our observations suggested that metformin treatment might be helpful for management of age-associated uterine dysfunctions. Moreover, it may be concluded that metformin might ameliorate uterine dysfunctions by reducing oxidative stress, suppressing apoptosis, and increasing the survival/antiapoptotic protein Bcl2.


Assuntos
Envelhecimento , Metformina , Estresse Oxidativo , Útero , Envelhecimento/efeitos dos fármacos , Animais , Caspase 3 , Feminino , Galactose , Metformina/farmacologia , Camundongos , Útero/efeitos dos fármacos , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA