Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Dent Res ; 103(2): 147-155, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38149503

RESUMO

MicroRNA (miR)-200c suppresses the initiation and progression of oral squamous cell carcinoma (OSCC), the most prevalent head and neck cancer with high recurrence, metastasis, and mortality rates. However, miR-200c-based gene therapy to inhibit OSCC growth has yet to be reported. To develop an miR-based gene therapy to improve the outcomes of OSCC treatment, this study investigates the feasibility of plasmid DNA (pDNA) encoding miR-200c delivered via nonviral CaCO3-based nanoparticles to inhibit OSCC tumor growth. CaCO3-based nanoparticles with various ratios of CaCO3 and protamine sulfate (PS) were used to transfect pDNA encoding miR-200c into OSCC cells, and the efficiency of these nanoparticles was evaluated. The proliferation, migration, and associated oncogene production, as well as in vivo tumor growth for OSCC cells overexpressing miR-200c, were also quantified. It was observed that, while CaCO3-based nanoparticles improve transfection efficiencies of pDNA miR-200c, the ratio of CaCO3 to PS significantly influences the transfection efficiency. Overexpression of miR-200c significantly reduced proliferation, migration, and oncogene expression of OSCC cells, as well as the tumor size of cell line-derived xenografts (CDX) in mice. In addition, a local administration of pDNA miR-200c using CaCO3 delivery significantly enhanced miR-200c transfection and suppressed tumor growth of CDX in mice. These results strongly indicate that the nanocomplexes of CaCO3/pDNA miR-200c may potentially be used to reduce oral cancer recurrence and improve clinical outcomes in OSCC treatment, while more comprehensive examinations to confirm the safety and efficacy of the CaCO3/pDNA miR-200c system using various preclinical models are needed.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , MicroRNAs , Neoplasias Bucais , Nanopartículas , Humanos , Animais , Camundongos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/terapia , Carcinoma de Células Escamosas/metabolismo , MicroRNAs/genética , Neoplasias Bucais/genética , Neoplasias Bucais/terapia , Neoplasias Bucais/metabolismo , Linhagem Celular Tumoral , Recidiva Local de Neoplasia , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/terapia , Proliferação de Células , Movimento Celular , Regulação Neoplásica da Expressão Gênica
2.
J Dent Res ; 102(11): 1261-1271, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37475472

RESUMO

Coordinated mineralization of soft tissue is central to organismal form and function, while dysregulated mineralization underlies several human pathologies. Oral epithelial-derived ameloblasts are polarized, secretory cells responsible for generating enamel, the most mineralized substance in the human body. Defects in ameloblast development result in enamel anomalies, including amelogenesis imperfecta. Identifying proteins critical in ameloblast development can provide insight into specific pathologies associated with enamel-related disorders or, more broadly, mechanisms of mineralization. Previous studies identified a role for MEMO1 in bone mineralization; however, whether MEMO1 functions in the generation of additional mineralized structures remains unknown. Here, we identify a critical role for MEMO1 in enamel mineralization. First, we show that Memo1 is expressed in ameloblasts and, second, that its conditional deletion from ameloblasts results in enamel defects, characterized by a decline in mineral density and tooth integrity. Histology revealed that the mineralization defects in Memo1 mutant ameloblasts correlated with a disruption in ameloblast morphology. Finally, molecular profiling of ameloblasts and their progenitors in Memo1 oral epithelial mutants revealed a disruption to cytoskeletal-associated genes and a reduction in late-stage ameloblast markers, relative to controls. Collectively, our findings integrate MEMO1 into an emerging network of molecules important for ameloblast development and provide a system to further interrogate the relationship of cytoskeletal and amelogenesis-related defects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA