RESUMO
Detecting parts per billion (ppb)-level nitrogen dioxide in high-moisture environments at room temperature without reducing sensing performance is a well-recognized significant challenge for metal oxide-based gas sensors. In this study, metal-organic framework-derived nickel-doped indium oxide (Ni-doped In2O3) mesoporous nanorods were prepared by a solvothermal method combined with the calcination process. The sensors prepared using the obtained Ni-doped In2O3 nanorods showcase an ultrahigh response, low detection limit, and excellent selectivity. Moreover, the abundant active sites triggered by nickel doping and the capillary enhancement effect caused by mesopores endow the sensor with ppb-level (20 ppb) NO2 detection capability in high-moisture environments (95% RH) at room temperature. With the increase in humidity, the carrier concentration of the sensor increases, and the nitric acid generated by nitrogen dioxide dissolved in water can be completely ionized in water and has high conductivity. Therefore, the gas response of the sensors increases with the increase in humidity. This study establishes a promising approach for the development of trace nitrogen dioxide-sensing devices that are resilient in high-humidity environments.
RESUMO
Gastric cancer (GC) is a highly heterogeneous and aggressive malignant tumor that seriously affects the life safety of people all over the world. Its early manifestations are subtle. The present study aimed to investigate the clinical significance of serum lipid profiles, insulin resistance markers including the triglyceride-glucose (TyG) index and the atherosclerotic index (AI), in GC patients. A retrospective analysis encompassed 215 GC patients and 827 healthy individuals. The study results show that the total cholesterol, triglycerides, low-density lipoprotein, high-density lipoprotein levels, and the TyG index of GC patients were significantly lower than those of the control group before and after propensity score matching analysis. In the GC group, the levels of CEA, CA199, CA125, and CA724 tumor markers were higher than those in the healthy control group. Patients in advanced stages exhibited lower serum levels of serum lipids and TyG index compared to those in early stages. ROC analysis revealed that the TyG index, CA125, and CA199 combination yielded the highest positive prediction rate for GC at 98.6%. TyG index is significantly associated with the risk of adverse reactions after chemotherapy (OR = 1.104, 95% CI 1.028-1.186, P < 0.01). Multiple tumor markers and the TyG index combined detection showed correlations with five adverse reactions caused by chemotherapy (r < 0.6, P < 0.05). Preoperative lipid profiles in the serum show a strong correlation with patients diagnosed with GC. Evaluating a combination of various serum lipids and cancer markers significantly improves diagnostic precision for GC and the ability to predict chemotherapy side effects.
Assuntos
Antígenos Glicosídicos Associados a Tumores , Biomarcadores Tumorais , Resistência à Insulina , Neoplasias Gástricas , Triglicerídeos , Humanos , Masculino , Neoplasias Gástricas/sangue , Neoplasias Gástricas/diagnóstico , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Biomarcadores Tumorais/sangue , Prognóstico , Triglicerídeos/sangue , Antígenos Glicosídicos Associados a Tumores/sangue , Idoso , Lipídeos/sangue , Glicemia/análise , Glicemia/metabolismo , Antígeno Carcinoembrionário/sangue , Estudos de Casos e Controles , AdultoRESUMO
BACKGROUND: Gasserian ganglion-targeted conventional and pulsed radiofrequency treatments are percutaneous procedures performed for drug-refractory trigeminal neuralgia. However, ideal outcomes are not always achieved with these procedures; frequent postprocedural complications and therapeutic ineffectiveness are also of major concern. OBJECTIVES: This study was conducted to investigate a novel strategy for effective, uncomplicated pain relief in patients with drug-refractory trigeminal neuralgia. STUDY DESIGN: A multicenter, retrospective, observational study. SETTING: Participating centers were Beijing Tiantan Hospital and Sanbo Brain Hospital. METHODS: From January 2010 through December 2019, a total of 2,087 patients with drug-refractory trigeminal neuralgia were included in the current study. Of them, 143 underwent sequential conventional radiofrequency treatment and 1,944 underwent conventional radiofrequency treatment only. The primary outcome was being pain free at 24 months postprocedure; multiple secondary outcomes were compared between treatments before and after propensity score matching. RESULTS: At the 24-month follow-up, sequential radiofrequency treatment provided a higher pain-free outcome than conventional radiofrequency treatment (0.93 [95% CI, 0.92-0.94]) vs 0.89, (95% CI, 0.84-0.94; P = 0.04); hazard ratio, 1.703 (95% CI, 1.01-2.86). For the 124 propensity score-matched pairs, there was no significant difference between groups, although pain-free outcomes were numerically higher in the sequential radiofrequency treatment group (0.93 [95% CI, 0.89-0.98]) vs 0.90 (95% CI, 0.85-0.96; P = 0.3); hazard ratio, 0.653 (95% CI, 0.27-1.60). Notably, sequential radiofrequency treatment correlated with fewer overall postprocedural complications than conventional radiofrequency treatment, despite propensity score matching analysis (14/143 vs 723/1944, relative risk, 0.69 (95% CI, 0.65-0.74; P < 0.001); 11/124 vs 45/124, relative risk 0.69 (95% CI, 0.60-0.80; P < 0.001). LIMITATIONS: Procedural parameters and quality of life evaluation by treatment were not analyzed and cost data were not collected. CONCLUSION: Sequential radiofrequency treatment has the potential to provide effective, uncomplicated, pain-free outcomes.
Assuntos
Pontuação de Propensão , Neuralgia do Trigêmeo , Humanos , Neuralgia do Trigêmeo/cirurgia , Neuralgia do Trigêmeo/terapia , Neuralgia do Trigêmeo/radioterapia , Estudos Retrospectivos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Resultado do Tratamento , Tratamento por Radiofrequência Pulsada/métodos , Manejo da Dor/métodosRESUMO
Background: Schizophrenia is one of the most severe mental disorders, frequently associated with aggression and violence, particularly in male patients. The underlying mechanisms of violent behavior in these patients remain unclear, limiting effective treatment options and highlighting the need for further research into interventions for impulsive behaviors. This study aims to evaluate the clinical efficacy of neurofeedback treatment in hospitalized male schizophrenia patients exhibiting impulsive behaviors. Methods: The study was designed as a single-center, randomized, single-blind, sham-controlled parallel trial. Eighty patients were randomly assigned to either a study group or a control group. The control group received risperidone and sham neurofeedback, while the study group received risperidone and active neurofeedback therapy. Both groups underwent training five times per week, with each session lasting 20 minutes, over a six-week period. Clinical symptoms were assessed at baseline, three weeks and six weeks using the Positive and Negative Syndrome Scale (PANSS), the Modified Overt Aggression Scale (MOAS), and the Rating Scale for Extrapyramidal Side Effects (RSESE). Statistical analyses were conducted to compare the therapeutic effects between the two groups at the study's conclusion. Results: Initial comparisons showed no significant differences in baseline data, except for the number of prior hospitalizations (P<0.018). By the end of the study, the study group demonstrate significant improvements in MOAS and PANSS scores (including the Excited, Positive, Cognitive, and Depressive/Anxiety Components), with no significant changes in RSESE scores. Discussion: Both time and group interactions were significant across most outcomes, underscoring the efficacy of neurofeedback in reducing the severity of impulsive behaviors and associated schizophrenia symptoms. Clinical trial registration: chictr.org.cn, identifier ChiCTR2200063407.
RESUMO
In recent years, the application of 3D printing technology in the energetic materials field has proved its ability to innovate traditional charging methods and fabricate complex structures to improve combustion/detonation performance. The melt extrusion technology is the most promising way to fabricate complex structures and multiple components of melt-cast explosives. In this study, a paraffine-based composite was used to substitute melt-cast explosives, and a Design of Experiments approach based on central composite design was adopted to investigate the influence of layer thickness, percent infill, extrusion temperature, and printing velocity on the roughness of printed samples. The results showed that layer thickness and printing velocity could significantly influence the roughness of printed specimens, and no obvious voids or cracks inside the specimens can be detected in computed tomography. In addition, a composite-shaped grain was successfully fabricated via the EAM-D-1 printer, which proved the feasibility of 3D printing melt-cast explosives with complex structures. This work will greatly help to achieve 3D printing melt-cast explosives with complex structures and higher accuracy.
RESUMO
With the advent of IoT technology in education, understanding its impact on physical education is crucial. This study investigates how the acceptance of wearable IoT devices influences the physical education results of college freshmen. It posits that user acceptance plays a mediating role in the effectiveness of these devices in enhancing physical performance metrics. The study enrolled 150 first-year students from Guangzhou University of Finance, divided equally into an experimental group and a control group. Participants in the experimental group were provided with 'Xiaomi 8' smart bracelets to be worn during physical education classes. The study spanned six weeks, focusing on assessing various physical performance metrics and the acceptance of the wearable technology. The data analysis involved comparing the physical performance of both groups and conducting regression analyses to evaluate the mediation effect of acceptance. Results indicated significant improvements in physical performance metrics in the experimental group, as evidenced by the Standardized Mean Differences (SMD). Notably, enhancements were observed in short-distance speed and aerobic endurance. The direct impact of wearable IoT devices on physical performance accounted for 66.4% variance, which increased to 84.1% upon incorporating acceptance as a mediator. These findings suggest that the effectiveness of wearable technology in physical education is significantly influenced by students' acceptance. The study concludes that wearable IoT devices can effectively enhance physical education outcomes among college students, with user acceptance playing a crucial mediating role. This underscores the importance of considering user acceptance in the integration of technology in educational settings. The findings provide valuable insights for educators and technologists in designing and implementing technology-integrated curricula.
Assuntos
Educação Física e Treinamento , Estudantes , Dispositivos Eletrônicos Vestíveis , Humanos , Estudantes/psicologia , Masculino , Feminino , Universidades , Educação Física e Treinamento/métodos , Adulto Jovem , Adolescente , Desempenho Físico FuncionalRESUMO
With the rapid development of flexible wearable electronics, the demand for stretchable energy storage devices has surged. In this work, a novel gradient-layered architecture was design based on single-pore hollow lignin nanospheres (HLNPs)-intercalated two-dimensional transition metal carbide (Ti3C2Tx MXene) for fabricating highly stretchable and durable supercapacitors. By depositing and inserting HLNPs in the MXene layers with a bottom-up decreasing gradient, a multilayered porous MXene structure with smooth ion channels was constructed by reducing the overstacking of MXene lamella. Moreover, the micro-chamber architecture of thin-walled lignin nanospheres effectively extended the contact area between lignin and MXene to improve ion and electron accessibility, thus better utilizing the pseudocapacitive property of lignin. All these strategies effectively enhanced the capacitive performance of the electrodes. In addition, HLNPs, which acted as a protective phase for MXene layer, enhanced mechanical properties of the wrinkled stretchable electrodes by releasing stress through slip and deformation during the stretch-release cycling and greatly improved the structural integrity and capacitive stability of the electrodes. Flexible electrodes and symmetric flexible all-solid-state supercapacitors capable of enduring 600% uniaxial tensile strain were developed with high specific capacitances of 1273 mF cm-2 (241 F g-1) and 514 mF cm-2 (95 F g-1), respectively. Moreover, their capacitances were well preserved after 1000 times of 600% stretch-release cycling. This study showcased new possibilities of incorporating biobased lignin nanospheres in energy storage devices to fabricate stretchable devices leveraging synergies among various two-dimensional nanomaterials.
RESUMO
Transition metal catalysts are widely used in the 2e- ORR due to their cost-effectiveness. However, they often encounter issues related to low activity. Defect engineering are used on developing highly active catalysts, which can effectively modify active sites and promote electron transfer. Here, carbon-coated Ni3S2 (Ni3S2@C), where the additional sulfur vacancies (VS) is prepared induced by the carbon layer is coupled with active nickel sites. Through in situ and ex situ experiments combined with DFT calculations, it is demonstrated that the carbon layer can regulate the quantity of VS in Ni3S2. Materials with a higher concentration of VS exhibit enhanced 2e- ORR activity and higher H2O2 selectivity. In situ Raman spectroscopy confirms that Ni serves as the key active site in this catalyst. DFT calculations indicate that the OOH binding energy (ΔG) decreases with an increase in the number of VS, favoring the protonation of *OOH to generate H2O2. Upon performance testing, the average H2O2 selectivity is 92.3%, with the highest yield reaching up to 3860 mmol gcat-1 h-1. It is noteworthy that Ni3S2@C exhibits high stability, with only a slight decrease in 2e- pathway selectivity after 5000 cycles of ADT.
RESUMO
Chikungunya virus (CHIKV) is the causative agent of chikungunya fever (CHIKF), and its primary vectors are the mosquitoes Aedes aegypti and Aedes albopictus. CHIKV was initially endemic to Africa but has spread globally in recent years and affected millions of people. According to a risk assessment by the World Health Organization, CHIKV has the potential seriously impact public health. A growing body of research suggests that mutations in the CHIKV gene that enhance viral fitness in the host are contributing to the expansion of the global CHIKF epidemic. In this article, we review the host-adapted gene mutations in CHIKV under natural evolution and laboratory transmission conditions, which can help improve our understanding of the adaptive evolution of CHIKV and provide a basis for monitoring and early warning of future CHIKV outbreaks.
Assuntos
Aedes , Febre de Chikungunya , Vírus Chikungunya , Genoma Viral , Mutação , Vírus Chikungunya/genética , Febre de Chikungunya/virologia , Febre de Chikungunya/transmissão , Animais , Humanos , Aedes/virologia , Aedes/genética , Mosquitos Vetores/virologia , Mosquitos Vetores/genética , Adaptação ao Hospedeiro/genéticaRESUMO
Objective: The purpose of this study is to develop and assess a nomogram risk prediction model for central precocious puberty (CPP) in obese girls. Methods: We selected 154 cases of obese girls and 765 cases of non-obese girls with precocious puberty (PP) who underwent the gonadotropin-releasing hormone stimulation test at the Jiangxi Provincial Children's Hospital. Univariate analysis and multivariate analysis were conducted to identify predictors of progression to CPP in girls with PP. A predictive model was developed and its predictive ability was preliminarily evaluated. The nomogram was used to represent the risk prediction model for CPP in girls with obesity. The model was validated internally using the Bootstrap method, and its efficacy was assessed using calibration curves and clinical decision analysis curves. Results: In obese girls with PP, basal luteinizing hormone (LH) and follicular stimulating hormone (FSH) levels, as well as uterine volume, were identified as independent risk factors for progression to CPP. In non-obese girls, the basal LH level, bone age, and uterine volume were identified as independent risk factors for progression to CPP. With an AUC of 0.896, the risk prediction model for obese girls, was found to be superior to that for non-obese girls, which had an AUC of 0.810. The model displayed strong predictive accuracy. Additionally, a nomogram was used to illustrate the CPP risk prediction model for obese girls. This model performs well in internal validation and is well calibrated, providing a substantial net benefit for clinical use. Conclusion: A medical nomogram model of CPP risk in obese girls comprised of basal LH value, basal FSH value, and uterine volume, which can be used to identify those at high risk for progression of CPP in obese girls and develop individualized prevention programs.
RESUMO
Understanding the transition from nonplanar to planar clusters is crucial for the controllable synthesis of transition metal dichalcogenide (TMDC) monolayers. Using PtSe2 as a model, we investigate how the chemical environment influences the nucleation and growth stages of monolayer PtSe2 through structure searching and first-principles calculations. We established a comprehensive database of platinum selenide clusters (PtxSey, x = 1-10), analyzing 2095 unique clusters and identifying 191 stable isomers and 63 structures with the lowest formation energy on the convex hull. Our findings reveal a chemical environment-dependent phase transition from 3D structures to the planar T-phase of PtxSey clusters, representing an evolutionary route for PtSe2 growth. Clusters such as PtSe6, Pt2Se9, Pt3Se10, and Pt7Se10 in Pt-rich environments, as well as Pt2Se15 and Pt10Se32 in Se-rich environments, have been found to exhibit high stability. Additionally, the impact of varying chemical potentials of Pt and Se on the stability of these clusters is explored. PtSe4 and PtSe6 are found to be highly stable under most experimentally achievable chemical potential conditions and may serve as dominant precursors during PtSe2 growth. This work advances our understanding of the nucleation processes of PtSe2 and other T-phase TMDC materials.
RESUMO
Biodegradable polylactic acid (PLA) nanofibrous mats prepared by electrospinning serve as suitable packaging materials. However, their practical applications are limited by their weak mechanical properties, poor thermal stability, and high cost. In this study, green and low-cost lignin-containing cellulose nanocrystals (LCNCs) with different lignin contents were developed and employed as reinforced materials to synergistically enhance the thermal, mechanical, and hydrophobic properties of PLA electrospun nanofibrous mats. The presence of moderate lignin improved the interfacial compatibility between the LCNCs and PLA, resulting in excellent mechanical properties of the nanofibrous mats. Compared to pure PLA mats, the tensile strength of the composites reached up to 21.0 MPa, representing a 6.6-fold increase. Its toughness was synchronously enhanced by 16 times, reaching a maximum of 3.6 MJ/m3. The maximum decomposition temperature of PLA/LCNCs electrospun nanofibrous mats increased from 339 °C to 365 °C. Furthermore, the increase in lignin in the LCNCs positively contributed to improving the hydrophobicity of the PLA/LCNCs electrospun nanofibrous mats. This bio-based strategy of LCNCs employed in the enhancement of fully bio-based PLA nanofibrous mats offers a viable approach for the advancement of packaging films.
RESUMO
Stroke is a leading cause of long-term disability and mortality worldwide, necessitating effective rehabilitation strategies for successful recovery. Traditional Chinese medicine (TCM) has gained recognition as a complementary and alternative approach in stroke rehabilitation, owing to its unique syndromes that offer valuable insights for personalized treatment plans. This study aims to elucidate the correlation between TCM syndromes observed during the recovery phase of stroke and the associated neurological deficits. Syndromes such as Blood stasis, Phlegm-dampness, Qi deficiency, and Yin deficiency were systematically examined, while standardized neurological assessments, encompassing motor function, sensory perception, and cognitive abilities, were employed to evaluate the extent of neurological impairment. Rigorous statistical analyses were conducted to discern potential correlations between TCM syndromes and the severity of neurological deficits. The results revealed statistically significant positive associations between certain TCM syndromes, particularly Blood stasis and Phlegm-dampness, and heightened neurological deficits during the recovery phase post-stroke. These findings suggest that these syndromes may serve as indicators of more severe brain injury post-stroke, thereby guiding the development of tailored rehabilitation strategies. By establishing robust connections between TCM syndromes and neurological deficits, this study contributes to advancing our understanding of stroke recovery through an integrated approach that incorporates TCM principles. Moreover, it underscores the potential benefits of integrating TCM into conventional rehabilitation protocols, offering valuable insights for healthcare professionals and potentially improving patient outcomes.
Assuntos
Medicina Tradicional Chinesa , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Medicina Tradicional Chinesa/métodos , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/fisiopatologia , Reabilitação do Acidente Vascular Cerebral/métodos , Feminino , Recuperação de Função Fisiológica , Masculino , Pessoa de Meia-Idade , Idoso , Síndrome , Doenças do Sistema Nervoso/reabilitaçãoRESUMO
Extracellular vesicle (EV)-based therapeutics have gained substantial interest in the areas of drug delivery, immunotherapy, and regenerative medicine. However, the clinical translation of EVs has been slowed due to limited yields and functional heterogeneity, as well as inadequate targeting. Engineering EVs to modify their inherent function and endow them with additional functions has the potential to advance the clinical translation of EV applications. Bio-orthogonal click chemistry is an engineering approach that modifies EVs in a controlled, specific, and targeted way without compromising their intrinsic structure. Here, we provide an overview of bio-orthogonal labeling approaches involved in EV engineering. We also present the isolation methods of bio-orthogonally labeled vesicles using magnetic beads, microfluidics, and microarray chip technologies. We highlight the in vivo applications of bio-orthogonal labeling EVs for diagnosis and therapy, especially the exciting potential of bio-orthogonal glycometabolic engineered EVs for targeted therapies.
Assuntos
Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Humanos , Animais , Sistemas de Liberação de Medicamentos , Química ClickRESUMO
Effective colonization by microbe in the rhizosphere is critical for establishing a beneficial symbiotic relationship with the host plant. Bacillus subtilis, a soil-dwelling bacterium that is commonly found in association with plants and their rhizosphere, has garnered interest for its potential to enhance plant growth, suppress pathogens, and contribute to sustainable agricultural practices. However, research on the dynamic distribution of B. subtilis within the rhizosphere and its interaction mechanisms with plant roots remains insufficient due to limitations in existing in situ detection methodologies. To achieve dynamic in situ detection of the rhizosphere environment, we established iRhizo-Chip, a microfluidics-based platform. Using this device to investigate microbial behavior within the rhizosphere, we found obvious diurnal fluctuations in the growth of B. subtilis in the rhizosphere. Temporal dynamic analysis of rhizosphere dissolved oxygen (DO), pH, dissolved organic carbon, and reactive oxygen species showed that diurnal fluctuations in the growth of B. subtilis are potentially related to a variety of environmental factors. Spatial dynamic analysis also showed that the spatial distribution changes of B. subtilis and DO and pH were similar. Subsequently, through in vitro control experiments, we proved that rhizosphere DO and pH are the main driving forces for diurnal fluctuations in the growth of B. subtilis. Our results show that the growth of B. subtilis is driven by rhizosphere DO and pH, resulting in diurnal fluctuations, and iRhizo-Chip is a valuable tool for studying plant rhizosphere dynamics.
Assuntos
Bacillus subtilis , Rizosfera , Microbiologia do Solo , Bacillus subtilis/metabolismo , Bacillus subtilis/fisiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Dispositivos Lab-On-A-Chip , Ritmo Circadiano/fisiologia , Oxigênio/metabolismo , Oxigênio/análise , Concentração de Íons de Hidrogênio , Espécies Reativas de Oxigênio/metabolismoRESUMO
Acute-on-chronic liver failure (ACLF) and decompensated cirrhosis (DC) are life-threatening syndromes that can develop at the end-stage of chronic hepatitis B virus (HBV) infection. Both ACLF and DC are complicated by hepatic and extrahepatic pathogeneses. To better understand the compartment-specific metabolic modulations related to their pathogenesis, HBV-DC, HBV-ACLF patients, and controls (30 each) were analyzed by metabolomics using portal (Port), hepatic vein (Hep), and peripheral (Peri) serum. Compartment ratios of metabolites (RatioHep/Port, RatioPeri/Hep, and RatioPort/Peri) were calculated. The liver tissues (10 per group) were analyzed using transcriptomics and metabolomics. An additional 75 patients with ACLF, 20 with DC, and 20 with liver cirrhosis (LC) were used to confirm oxlipid dysregulation. Both multi-omics datasets suggest suppressed energy, amino acid, and pyrimidine metabolism in the ACLF/DC liver. The serum metabolomic variations were contributed primarily by disease rather than sampling compartments, as both HBV-ACLF and HBV-DC patients demonstrated abnormal profiles of amino acids and peptides, indoles, purines, steroids, and benzimidazoles. In ACLF/DC patients, impaired hepatic metabolism resulted in a highly correlated hepatic and portal vein serum metabolome and release of inflammatory lipids and heme metabolites from the liver. HBV-ACLF showed higher RatioPeri/Hep of extrahepatic inflammatory oxlipids, while HBV-DC patients showed higher RatioPort/Peri of gut microbial metabolites. An inflammatory oxlipid outburst was confirmed in the early stages of HBV-ACLF. The inflammatory effects of the selected oxlipids were confirmed in monocytes. These findings support a synergy between liver-specific mechanisms and systemic inflammation in ACLF/DC development, and that pro-inflammatory oxlipids are metabolic signatures of early HBV-ACLF.
Assuntos
Insuficiência Hepática Crônica Agudizada , Vírus da Hepatite B , Hepatite B Crônica , Cirrose Hepática , Fígado , Metabolômica , Humanos , Insuficiência Hepática Crônica Agudizada/virologia , Cirrose Hepática/virologia , Cirrose Hepática/metabolismo , Masculino , Feminino , Fígado/metabolismo , Fígado/virologia , Pessoa de Meia-Idade , Adulto , Hepatite B Crônica/complicações , Hepatite B Crônica/virologia , Vírus da Hepatite B/genética , MetabolomaRESUMO
BACKGROUND: This study was to investigate the application value of whole-body dynamic 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) imaging in recurrent anastomotic tumors of digestive tract after gastric and esophageal cancer surgery. Postoperative patients with gastric and esophageal cancer have a high risk of tumor recurrence, and traditional imaging methods have certain limitations in early detection of recurrent tumors. Whole-body dynamic 18F-FDG PET/CT imaging, due to its high sensitivity and specificity, can provide comprehensive information on tumor metabolic activity, which is expected to improve the early diagnosis rate of postoperative recurrent tumors, and provide an important reference for clinical treatment decision-making. AIM: To investigate the clinical value of whole-body dynamic 18F-FDG PET/CT imaging in differentiating anastomotic recurrence and inflammation after the operation of upper digestive tract tumors. METHODS: A retrospective analysis was performed on 53 patients with upper digestive tract tumors after operation and systemic dynamic 18F-FDG PET/CT imaging indicating abnormal FDG uptake by anastomosis, including 29 cases of gastric cancer and 24 cases of esophageal cancer. According to the follow-up results of gastroscopy and other imaging examinations before and after PET/CT examination, the patients were divided into an anastomotic recurrence group and anastomotic inflammation group. Patlak multi-parameter analysis software was used to obtain the metabolic rate (MRFDG), volume of distribution maximum (DVmax) of anastomotic lesions, and MRmean and DVmean of normal liver tissue. The lesion/background ratio (LBR) was calculated by dividing the MRFDG and DVmax of the anastomotic lesion by the MRmean and DVmean of the normal liver tissue, respectively, to obtain LBR-MRFDG and LBR-DVmax. An independent sample t test was used for statistical analysis, and a receiver operating characteristic curve was used to analyze the differential diagnostic efficacy of each parameter for anastomotic recurrence and inflammation. RESULTS: The dynamic 18F-FDG PET/CT imaging parameters MRFDG, DVmax, LBR-MRFDG, and LBR-DVmax of postoperative anastomotic lesions in gastric cancer and esophageal cancer showed statistically significant differences between the recurrence group and the inflammatory group (P < 0.05). The parameter LBR-MRFDG showed good diagnostic efficacy in differentiating anastomotic inflammation from recurrent lesions. In the gastric cancer group, the area under the curve (AUC) value was 0.935 (0.778, 0.993) when the threshold was 1.83, and in the esophageal cancer group, the AUC value was 1. When 86 is the threshold, the AUC value is 0.927 (0.743, 0.993). CONCLUSION: Whole-body dynamic 18F-FDG PET/CT imaging can accurately differentiate the diagnosis of postoperative anastomotic recurrence and inflammation of gastric cancer and esophageal cancer and has the potential to be an effective monitoring method for patients with upper digestive tract tumors after surgical treatment.
RESUMO
Plasmid-mediated conjugative transfer of antibiotic resistance genes (ARGs) within the human and animal intestine represents a substantial global health concern. linoleic acid (LA) has shown promise in inhibiting conjugation in vitro, but its in vivo effectiveness in the mammalian intestinal tract is constrained by challenges in efficiently reaching the target site. Recent advancements have led to the development of waterborne polyurethane nanoparticles for improved drug delivery. In this study, we synthesized four waterborne polyurethane nanoparticles incorporating LA (WPU@LA) using primary raw materials, including N-methyldiethanolamine, 2,2'-(piperazine-1,4-diyl) diethanol, isophorone diisocyanate, castor oil, and acetic acid. These nanoparticles, identified as WPU0.89@LA, WPU0.99@LA, WPU1.09@LA, and WPU1.19@LA, underwent assessment for their pH-responsive release property and biocompatibility. Among these, WPU0.99@LA displayed superior pH-responsive release properties and biocompatibility towards Caco-2 and IPEC-J2 cells. In a mouse model, a dosage of 10 mg/kg/day WPU0.99@LA effectively reduced the conjugation of IncX4 plasmids carrying the mobile colistin resistance gene (mcr-1) by more than 45.1-fold. In vivo toxicity assessment demonstrated that 10 mg/kg/day WPU0.99@LA maintains desirable biosafety and effectively preserves gut microbiota homeostasis. In conclusion, our study provides crucial proof-of-concept support, demonstrating that WPU0.99@LA holds significant potential in controlling the spread of antibiotic resistance within the mammalian intestine.
RESUMO
Hydrogels with remarkable flexibility have gained popularity as materials for current research. However, the unfavorable properties of short-term adhesion, susceptibility to damage, and freezing in low-temperature presented by conventional hydrogels have become bottlenecks for further applications. In this work, an anti-freezing hydrogel with excellent mechanical, adhesion, and self-healing properties were developed by constructing a persistent semiquinone/quinone-catechol redox equilibrium environment. The introduction of lignin-modified cellulose nanofibers (LCNFs) significantly improved the overall mechanical properties of the material, driven by strong hydrogen bond interactions. This enhancement was evident in the tensile properties (97.74 ± 1.72 kPa, 783 %) and compression properties (> 90 %). Within the internal network of the gel, the synergistic action of lignin and ammonium persulfate resulted in the production of catechol, which imparted the gel with excellent adhesion properties (28.26 ± 2.13 KPa) and broad adhesion applicability. In addition, the incorporation of ethylene glycol (EG) positively contributed to the strengthening of the gel while endowed with tunable anti-freezing properties. Given the exceptional advantages of the prepared hydrogels, they were used to assemble flexible strain sensors with outstanding sensitivity for monitoring human motions.
Assuntos
Celulose , Hidrogéis , Lignina , Nanofibras , Nanofibras/química , Hidrogéis/química , Lignina/química , Celulose/química , Celulose/análogos & derivados , Solventes/química , Congelamento , Resistência à Tração , Ligação de Hidrogênio , Catecóis/químicaRESUMO
The spread of antibiotic resistance genes (ARGs), particularly those carried on plasmids, poses a major risk to global health. However, the extent and frequency of ARGs transfer in microbial communities among human, animal, and environmental sectors is not well understood due to a lack of effective tracking tools. We have developed a novel fluorescent tracing tool, CRISPR-AMRtracker, to study ARG transfer. It combines CRISPR/Cas9 fluorescence tagging, fluorescence-activated cell sorting, 16S rRNA gene sequencing, and microbial community analysis. CRISPR-AMRtracker integrates a fluorescent tag immediately downstream of ARGs, enabling the tracking of ARG transfer without compromising the host cell's antibiotic susceptibility, fitness, conjugation, and transposition. Notably, our experiments demonstrate that sfGFP-tagged plasmid-borne mcr-1 can transfer across diverse bacterial species within fecal samples. This innovative approach holds the potential to illuminate the dynamics of ARG dissemination and provide valuable insights to shape effective strategies in mitigating the escalating threat of antibiotic resistance.