Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Opt Lett ; 49(13): 3729-3732, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950253

RESUMO

In this paper, a dynamic updated key distribution encryption scheme based on syncretic W band-passive optical network (PON) is proposed. The 102 Gb/s encrypted data rate using 64QAM is successfully transmitted over the 50 m wireless distance under 15% soft-decision forward error correction (SD-FEC) for a pre-FEC bit error rate (BER) threshold of 1.56 × 10-2. The scheme can realize an error-free public key transmission and public key updates up to 1014 times. In the encryption transmission system, there is a small deviation of the private key, and the received BER is more than 0.45. As far as we know, this is the first time to complete a dynamic key distribution based on a syncretic W band-PON system.

2.
Opt Lett ; 49(12): 3444-3447, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38875641

RESUMO

In this Letter, we propose a method for ultrahigh-order QAM secure transmission and key distribution based on delta-sigma modulation (DSM) and discrete memristive-enhanced chaos (DMEC). The disturbance vectors generated by the DMEC scramble the DSM signals in both frequency and time domains, resulting in highly secure DSM signals. Through the key modulation and power adjustment and then superimposing them on the encrypted signals, the method achieves simultaneous transmission of keys and signals without the need for additional spectral resources. This approach allows for secure communication with continuous key iteration and updates, offering an effective solution for implementing "one-time pad" encryption. In the experimental demonstration, we achieved a secure transmission and key distribution of a 16384QAM signal at a rate of 17.09 Gb/s over 25 km in an intensity-modulated direct detection (IMDD) system, based on DSM.

3.
Opt Express ; 32(11): 19019-19033, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38859046

RESUMO

In order to guarantee the information of the W-band wireless communication system from the physical layer, this paper proposes the sliced chaotic encrypted (SCE) transmission scheme based on key masked distribution (KMD). The scheme improves the security of free space communication in the W-band millimeter-wave wireless data transmission system. In this scheme, the key information is embedded into the random position of the ciphertext information, and then the ciphertext carrying the key information is encrypted by multi-dimensional chaos. Chaotic system 1 constructs a three-dimensional discrete chaotic map for implementing KMD. Chaotic system 2 constructs complex nonlinear dynamic behavior through the coupling of two neurons, and the masking factor generated is used to realize SCE. In this paper, the transmission of 16QAM signals in a 4.5 m W-band millimeter-wave wireless communication system with a rate of 40 Gb/s is proved by experiments, and the performance of the system is analyzed. When the input optical power is 5 dBm, the bit error rate (BER) of the legitimate encrypted receiver is 1.23 × 10-3. When the offset of chaotic sequence x and chaotic sequence y is 100, their BERs are more than 0.21. The key space of the chaotic system reaches 10192, which can effectively prevent illegal attacks and improve the security performance of the system. The experimental results show that the scheme can effectively distribute the keys and improve the security of the system. It has great application potential in the future of W-band millimeter-wave wireless secure communication.

4.
Opt Express ; 32(11): 19438-19448, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38859078

RESUMO

In this paper, a secure orthogonal time-frequency space (OTFS) modulation transmission system based on 3D dense constellation mapping (DCM) geometric shaping is proposed, and a selective reduction amplitude algorithm (SRA) for DCM to reduce peak average power ratio (PAPR) is presented. The DCM is based on regular tetrahedron construction to improve its space utilization efficiency. The proposed SRA involves reducing high PAPRs transmitter and restoring them at the receiving end, which only requires an additional 0.57% of the total transmission capacity. The algorithm reduces PAPR while ensuring the bit error rate performance of the system, so it is suitable for systems that need to process large amounts of transmitted data quickly. By verifying the actual transmission performance on a 2 km of 7-core optical fiber transmission system, the optical transmission with a bit rate of 33.93Gb/s is achieved. The experimental results show that when the bit error rate (BER) reaches the 3.8×10-3 threshold, the OTFS system using DCM and SRA could improve the receiver sensitivity by 3.7 dB compared with the OTFS system using concentric cube mapping and SRA, and 2.7 dB compared with the OFDM system using DCM. After adding the SRA, the PAPR of the OTFS system is reduced by more than 2.2 dB. When the received optical power reaches near the bit error rate threshold, the SRA valid data can be fully recovered by optimizing the SRA.

5.
Opt Express ; 32(11): 19984-19998, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38859118

RESUMO

This paper proposes a high-security multidimensional data protection system based on the Hartley algorithm-driven chaotic scheme. We utilize the fast Hartley algorithm instead of the fast fourier computation, and we employ chaotic sequences generated by the multi-winged chaotic system to achieve chaos-driven 3D constellation mapping, effectively integrating the chaotic system with the stochastic amplitude modulator. We reduce the signal's peak-to-average power ratio (PAPR) by deploying a random amplitude modulator. Simultaneously, this approach enhances the security of the physical layer of the signal. The PAPR reduction can reach up to 2.6 dB, while the most robust and stable modulator scheme can gain 2 dB. Finally, in the Hartley frequency domain, the signal's frequency is disrupted, providing the entire system with a key space of 10131 to resist violent cracking and thus improving the system's overall security. To validate the feasibility of our scheme in comparison to conventional IFFT-based encrypted 3D orthogonal frequency division multiplexing, We achieved a transmission rate of 27.94 Gb/s over a 2 km multicore fiber. Experimental results show that since the random amplitude generator effectively reduces PAPR, our proposed encryption scheme increases the forward error correction threshold range by 1.1 dB, verifying that our proposed scheme has highly reliable security performance.

6.
Opt Express ; 32(9): 15053-15064, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38859165

RESUMO

The purpose of this study is to present a physical layer security scheme for key concealment and distribution based on carrier scrambling. The three-dimensional (3D) Lorenz system is used to generate independent chaotic sequences that encrypt the information with bit, constellation and subcarrier. In order to realize the flexible distribution of the key and ensure its security, the key information is loaded into a specific subcarrier. While key subcarrier and the ciphertext subcarrier are scrambled simultaneously. The encrypted key position information is processed and transmitted in conjunction with the training sequence (TS) to facilitate demodulation by the legitimate receiver. The processed TS can accommodate up to 10 key position information, thereby demonstrating the scheme's exceptional scalability. Experimental results show that the proposed scheme can safely transmit 131.80 Gb/s Orthogonal frequency division multiplexing (OFDM) signals across 2 km 7-core fiber. Meanwhile, the scheme enables simultaneous flexible distribution and concealment of the key, thereby offering a promising solution for physical layer security.

7.
Opt Express ; 32(12): 20515-20527, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38859432

RESUMO

In this paper, we propose a method for training a key-enhanced chaotic sequence using the convolutional long short term memory neural network (CLSTM-NN) for secure transmission. This method can cope with the potential security risk posed by the degradation of chaotic dynamics when using chaotic model encryption in traditional secure transmissions. The simulation results show that the proposed method improves the key space by 1036 compared to traditional chaotic models, reaching 10241. The method was applied to orthogonal chirp division multiplexing (OCDM). To demonstrate the feasibility of the proposed scheme, we conducted transmission experiments of encrypted 16 quadrature amplitude modulation (QAM) OCDM signals at a speed of 53.25 Gb/s over a 2 km length of 7-core optical fiber and test different encryption schemes. After key enhancements, the overall number of keys in the system can increase from 18 to 105.The results show that there is no significant difference between the bit error rate (BER) performance of the encryption method proposed in this paper and the traditional encryption method. The maximum performance difference between the different systems does not exceed 1 dBm. This fact proves the feasibility of the proposed scheme and provides new ideas for the next generation of secure transmission.

8.
Opt Express ; 32(12): 21258-21268, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38859484

RESUMO

In this paper, we propose a high-security space division multiplexing optical transmission scheme based on constellation grid selective twisting, which adopts the Rossler chaos model for encrypting PDM-16QAM signals, being applied to a multicore, few-mode multiplexing system. The bitstream of the program is passed through XOR function before performing constellation grid selective twisting and rotation of the constellation map to improve the security of the system. The proposed system is verified experimentally by using 80-wave and 4-mode multiplexing in one of the 19-core 4-mode fibers. Based on the proposed encryption method, a net transmission rate of 34.13 Tbit/s, a transmission distance of 6000 km, and a capacity distance product of 204.8 Pb/s × km is achieved under encrypted PDM-QPSK modulation. Likewise, a net transmission rate of 68.27 Tbit/s, a transmission distance of 1000 km, and a capacity distance product of 68.27 Pb/s × km is achieved based on encrypted PDM-16QAM modulation. It is experimentally verified that the sensitivity of the initial value in Rossler's chaotic model is in the range of 10-16∼10-17. Meanwhile, the proposed encryption scheme achieves a large key space of 10101, which is compatible with the high-capacity distance product multicore and few-mode multiplexing system. It is a promising candidate for the next-generation highly-secured high-capacity transmission system.

9.
Opt Express ; 32(6): 9671-9685, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571196

RESUMO

In this paper, we propose a high spectral efficiency modulation scheme based on joint interaction of orthogonal compressed chirp division multiplexing (OCCDM) and power superimposed code (PSC) under the intensity modulation and direct detection (IM/DD) system. OCCDM is a novel orthogonal chirp division multiplexing technology featuring spectral compression through the implementation of processing similar to a discrete Fourier transform, enhancing the spectral efficiency (SE) through bandwidth savings without loss of orthogonality of each chirp. Meanwhile, PSC technology enables multiple code words being transmitted superimposed on the same chirp. This technique involves allocating varying power levels to different users, thereby distinguishing them, increasing the transmission's net bit rate and substantially boosting the SE. The transmission has been performed experimentally using a 2 km 7-core fiber span. The impact of the above-mentioned technologies on the bit error rate (BER) performance is assessed in the power, frequency, and joint domain. The BER and enhancements in the SE can be balanced when the spectral bandwidth compression factor (α) and power distribution ratio are equal to 0.9 and 4, respectively. The observed outcome leads to the transmission's SE increase to more than double the baseline value, at 2.22 times. Based on the above analysis, we believe this structure is expected to become a potential for developing next-generation PON.

10.
Phys Chem Chem Phys ; 26(12): 9475-9487, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38450519

RESUMO

Based on the synergistic modulation of electromagnetic parameters and microstructure design, multidimensional porous magnetic carbon-based nanocomposites have become ideal materials with efficient absorption properties. What's more, a carbon-magnetic alloy composite is a commonly used and efficient microwave absorber. In this paper, Co7Fe3/Co@CBC (CFCC) nanocomposites with strong magnetism, a three-phase composition, and a three-dimensional porous structure were synthesized by reducing Fe2+ and Co2+ using chestnut-shell biomass carbon (CBC). Biomass carbon with a higher specific surface area provides numerous active sites for Co7Fe3 nanosheets and Co nanospheres to form three-dimensional ping-pong chrysanthemum-like nanocomposites, which generate rich heterogeneous interfaces and conductive network structures. By adjusting the amount of added biomass, the electromagnetic parameters can be effectively regulated to achieve efficient microwave absorption properties. When the amount of biomass added varies within the range of 1.0 to 2.5 g, all samples exhibit a favorable effective absorption bandwidth (EAB) of over 5.88 GHz. In particular, the CFCC-2.0 composite exhibits optimal microwave absorption properties, with a minimum reflection loss (RLmin) value of -59.25 dB and an EAB of 6.34 GHz at a thickness of 2.8 mm. The simulation and modeling analysis results of radar cross section (RCS) further confirm the exceptional attenuation capability of composite materials at multiple incident angles. The exceptional microwave absorption properties and stability of EAB for the Co7Fe3/Co@CBC nanocomposite make it a promising candidate in the field of absorbing materials. This work also provides some feasible ideas for designing stable broadband wave-absorbing materials.

11.
Opt Lett ; 49(4): 1069-1072, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359255

RESUMO

This Letter proposes a high-security and high-order signal transmission method that is based on delta-sigma modulation (DSM) and discrete memristive-enhanced chaos (DMEC). We employ the DMEC for the encryption of DSM signals to achieve a key space of 1098 in size. Moreover, we demonstrated a high-security transmission of 16384QAM signals using the DSM over a 25 km single-mode fiber in the intensity-modulated direct detection (IMDD) system. The experimental results show that the proposed ultrahigh-order transmission scheme based on DMEC and DSM guarantees high signal transmission performances with improved security and a key sensitivity level of 10-17.

12.
Sensors (Basel) ; 24(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38400231

RESUMO

This study proposes and presents a new central office (CO) for the optical metro access network (OMAN) with an affordable and distinctive switching system. The CO's foundation is built upon a novel optical multicarrier (OMC) generation technique. This technique provides numerous frequency carriers that are characterized by a high tone-to-noise ratio (TNR) of 40 dB and minimal amplitude excursions. The purpose is to accommodate multiple users at the optical network unit side in the optical metropolitan area network (OMAN). The OMC generation is achieved through a cascaded configuration involving a single phase and two Mach Zehnder modulators without incorporating optical or electrical amplifiers or filters. The proposed OMC is installed in the CO of the OMAN to support the 1.2 Tbps downlink and 600 Gbps uplink transmission, with practical bit error rate (BER) ranges from 10-3 to 10-13 for the downlink and 10-6 to 10-14 for the uplink transmission. Furthermore, in the OMAN's context, optical fiber failure is a main issue. Therefore, we have proposed a possible solution for ensuring uninterrupted communication without any disturbance in various scenarios of main optical fiber failures. This demonstrates how this novel CO can rapidly recover transmission failures through robust switching a and centralized OLT. The proposed system is intended to provide users with a reliable and affordable service while maintaining high-quality transmission rates.

13.
Opt Express ; 32(2): 1979-1997, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38297738

RESUMO

This paper proposes a high-security chaotic encrypted power sparse coding division (CE-PSCD) scheme for 7-core fiber based on non-orthogonal multiple access (NOMA) technology. The method utilizes power multiplexing to realize parallel transmission of two signals. Joint encryption of the four-dimensional region is realized using constellation mapping encryption, carrier frequency encryption, symbol scrambling, and sparse code scrambling. What we believe to be a new dimension for encryption of autonomously designed sparse codes is proposed. Meanwhile, we hide the chaotic key in training sequence (TS) to realize the co-transmission of the key and the message. A 70 Gb/s CE-PSCD signal transmission over 2 km of 7-core fiber is demonstrated experimentally. At the limit of forward error correction (FEC) ∼3.8 × 10-3, the difference in the encrypted sensitivity among different users at the equal power level is 0.36 dB, which means that the fairness of users will not be destroyed. The key space can reach 10134, with a bit error rate (BER) of about 0.5 for brute-force cracking at illegal receivers. As long as the key bits in the hidden TS are wrong by one bit, the BER stays around 0.5. The results show no significant attenuation of the signal before and after encryption at either high or low power, verifying the high-security performance of our proposed scheme.

14.
Opt Express ; 31(22): 36123-36135, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-38017768

RESUMO

A new optical transmitting scheme based on chaotic constant component distribution matcher (CCDM) and Polar coding was proposed. The data is first encrypted by Polar coding using a five-dimensional chaotic sequence. Then the encrypted data is divided into two paths to perform chaotic CCDM encryption operations with different schemes. Finally, the two channels are merged, and the subcarriers are scrambled. The transmission experiment of 16QAM-OFDM signal on 2 km seven-core fiber is conducted to verify the scheme's feasibility. The experimental results show that the received optical power of all ONUs is less than -15dBm when the BER of all ONUs is reduced to less than 10-3. In addition, the key space of the proposed system reaches 1085, and the security performance is further enhanced. The advantages of BER and safety performance make this two-path chaotic encrypted OFDM-PON with an optimistic application prospect in the current optical transmission systems.

15.
Opt Express ; 31(23): 38640-38652, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-38017964

RESUMO

In this paper, we propose a high-security three-dimensional optical transmission system utilizing time-frequency-space interleaving chaos, which simultaneously enhances the reliability and security of the system. The four-wing 3D chaos model encrypts the time-frequency space interleaved modulation domain of a orthogonal time-frequency space (OTFS) modulation signal and the modulated phase information simultaneously, improving the system's security. We also experimentally validate the proposed high-security 3D-OTFS method, utilizing the hexadecimal modulation technique. The modulated OTFS signal achieves a transmission rate of 34.1 Gb/s over a 2-km seven-core fiber link, with the OTFS signal exhibiting a maximum of 1.31 dB receiver sensitivity gain compared to orthogonal frequency division multiplexing (OFDM) signals under the forward error correction threshold of the bit error rate. The achieved keyspace is equal to 5 × 1048. The findings demonstrate that the proposed high-security three-dimensional optical transmission mechanism, based on time-frequency-space interleaved disruption, exhibits excellent anti-interference ability and confidentiality performance. Consequently, it holds promising prospects for future applications in optical communications.

16.
Hum Brain Mapp ; 44(18): 6429-6438, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37909379

RESUMO

This study aims to explore the changes of the aspartate (Asp) level in the medial-prefrontal cortex (mPFC) of subjects with nicotine addiction (nicotine addicts [NAs]) using the J-edited 1 H MR spectroscopy (MRS), which may provide a positive imaging evidence for intervention of NA. From March to August 2022, 45 males aged 40-60 years old were recruited from Henan Province, including 21 in NA and 24 in nonsmoker groups. All subjects underwent routine magnetic resonance imaging (MRI) and J-edited MRS scans on a 3.0 T MRI scanner. The Asp level in mPFC was quantified with reference to the total creatine (Asp/Cr) and water (Aspwater-corr , with correction of the brain tissue composition) signals, respectively. Two-tailed independent samples t-test was used to analyze the differences in levels of Asp and other coquantified metabolites (including total N-acetylaspartate [tNAA], total cholinine [tCho], total creatine [tCr], and myo-Inositol [mI]) between the two groups. Finally, the correlations of the Asp level with clinical characteristic assessment scales were performed using the Spearman criteria. Compared with the control group (n = 22), NAs (n = 18) had higher levels of Asp (Asp/Cr: p = .005; Aspwater-corr : p = .004) in the mPFC, and the level of Asp was positively correlated with the daily smoking amount (Asp/Cr: p < .001; Aspwater-corr : p = .004). No significant correlation was found between the level of Asp and the years of nicotine use, Fagerstrom Nicotine Dependence (FTND), Russell Reason for Smoking Questionnaire (RRSQ), or Barratt Impulsivity Scale (BIS-11) score. The elevated Asp level was observed in mPFC of NAs in contrast to nonsmokers, and the Asp level was positively correlated with the amount of daily smoking, which suggests that nicotine addiction may result in elevated Asp metabolism in the human brain.


Assuntos
Nicotina , Tabagismo , Masculino , Humanos , Adulto , Pessoa de Meia-Idade , Nicotina/metabolismo , Ácido Aspártico/metabolismo , Tabagismo/diagnóstico por imagem , Creatina/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Imageamento por Ressonância Magnética , Inositol/metabolismo , Córtex Pré-Frontal/metabolismo , Água/metabolismo
17.
Opt Lett ; 48(20): 5253-5256, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37831840

RESUMO

In this Letter, a new, to the best of our knowledge, geometric shaping method for an ultrahigh-order 16384-ary quadrature amplitude modulation (16384QAM) constellation based on the delta-sigma modulation technique is proposed. Based on the characteristics of delta-sigma modulation, the constellation was optimized to obtain greater constellation gain and improve the maximum performance of the system. Finally, the proposed scheme was demonstrated on an intensity-modulated direct detection (IMDD) system through a 25 km single-mode fiber transmission. On performing experiments, it was found that the suggested approach increases the receiver sensitivity of ultrahigh-order QAM communication systems based on delta-sigma modulation by around 0.5 dB and further enhances the error performance limit.

18.
Opt Lett ; 48(17): 4548, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37656550

RESUMO

This publisher's note contains corrections to Opt. Lett.48, 4101 (2023)10.1364/OL.493540.

19.
Opt Express ; 31(19): 30130-30145, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37710562

RESUMO

This paper proposes a three-dimensional power sparse code division non-orthogonal multiple access (3D-PSCD-NOMA) scheme with 3D constellation pair mapping. The proposed sparse code is based on a balanced incomplete block design (BIBD). Its correlation matrix performs the overall signal mapping of multi-user information. Power multiplexing is realized by overlaying multi-level power signals with different path losses through pair mapping. Compared with the conventional 2D standard square 32 Quadrature Amplitude Modulation (QAM), the proposed 3D constellation pair mapping can improve the constellation points' minimum Euclidean distance (MED) by 17.7%, which is beneficial for the performance of the system. Based on obtaining the optimal power distribution ratio (PDR) for different schemes, a 3D-PSCD-NOMA signal with a rate of 15.22 Gb/s over a 25 km single-mode fiber (SMF) is experimentally performed. The experimental results show that 3D-PSCD-NOMA has a clear superiority. At the same rate, 3D-PSCD-NOMA2 can obtain a sensitivity gain of about 1.6 dB and 1.9 dB over the conventional 2D constellation. Moreover, 3D-PSCD-NOMA reduces the system's peak-to-average power ratio (PAPR) by 1.3 dB. The difference in sensitivity of the system before and after sparse code is about 0.15 dB, and no significant degradation occurred. Due to its advantages in transmission performance, 3D-PSCD-NOMA is a potential solution for future optical access systems.

20.
Opt Express ; 31(17): 27711-27722, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37710840

RESUMO

In this paper, we propose a multi-dimensional multiplexing scheme for space division multiplexing optical transmission systems based on quaternion chaotic encryption. A constellation compression shaping mapping method is designed to replace the traditional 2n mapping scheme, which leads to flexible encoding modulation. In order to achieve orthogonality between data symbols and effectively suppress crosstalk, the spectrally superposed transmission of three-dimensional (3D) constellation data is carried out by code division multiplexing and 4D carrier-less amplitude phase joint modulation techniques based on orthogonal basis. The Chen's chaotic model is utilized to generate the rotation angle of the constellation points, which enables data encryption without changing the transmitted power, enhancing system's security. The feasibility and superiority of the proposed scheme are successfully verified by constructing an experimental platform for a seven-core fiber transmission system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA