Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(6): 1192-1199, 2023 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-38151943

RESUMO

The clinical performance and failure issues are significantly influenced by prosthetic malposition in unicompartmental knee arthroplasty (UKA). Uncertainty exists about the impact of the prosthetic joint line height in UKA on tibial insert wear. In this study, we combined the UKA musculoskeletal multibody dynamics model, finite element model and wear model to investigate the effects of seven joint line height cases of fixed UKA implant on postoperative insert contact mechanics, cumulative sliding distance, linear wear depth and volumetric wear. As the elevation of the joint line height in UKA, the medial contact force and the joint anterior-posterior translation during swing phase were increased, and further the maximum von Mises stress, contact stress, linear wear depth, cumulative sliding distance, and the volumetric wear also were increased. Furthermore, the wear area of the insert gradually shifted from the middle region to the rear. Compared to 0 mm joint line height, the maximum linear wear depth and volumetric wear were decreased by 7.9% and 6.8% at -2 mm joint line height, and by 23.7% and 20.6% at -6 mm joint line height, the maximum linear wear depth and volumetric wear increased by 10.7% and 5.9% at +2 mm joint line height, and by 24.1% and 35.7% at +6 mm joint line height, respectively. UKA prosthetic joint line installation errors can significantly affect the wear life of the polyethylene inserted articular surfaces. Therefore, it is conservatively recommended that clinicians limit intraoperative UKA joint line height errors to -2-+2 mm.


Assuntos
Artroplastia do Joelho , Prótese do Joelho , Osteoartrite do Joelho , Humanos , Articulação do Joelho , Fenômenos Mecânicos , Polietileno , Osteoartrite do Joelho/cirurgia , Tíbia/cirurgia , Fenômenos Biomecânicos
2.
Medicine (Baltimore) ; 102(45): e35989, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37960812

RESUMO

BACKGROUND: Hyperplasia of the mammary glands (HMG) is the most prevalent breast disease and can become malignant if left untreated. Although "Sancai therapy" has been widely used to treat HMG, its efficacy has not yet been systematically reviewed. This study aims to systematically evaluate the clinical efficacy of Sancai therapy for HMG treatment and provide a clinical basis for its future use. METHODS: PubMed, Cochrane Library, Web of Science, EMBASE, CNKI, CBM, VIP, and Wanfang databases were reviewed for related data collection. Chinese and English databases were searched for randomized controlled trials on Sancai therapy for HMG. The retrieval date was February 27, 2023. Exclusion criteria: (1) Non-HMG patients; (2) case reports, literature reviews, animal experiments, systematic reviews; and (3) full text could not be obtained. Data obtained after literature screening were imported into the RevMan 5.4.1 software for meta-analysis, and the included literature was assessed for methodological quality using the "bias risk assessment" tool within the software. RESULTS: The meta-analysis included 11 studies. Compared to the control group, the Sancai therapy treatment group exhibited an overall increased efficacy (relative risk = 1.36, 95% confidence interval [CI] [1.18, 1.58], P < .0001), an increased cure rate (relative risk = 3.74, 95% CI [1.70, 8.25], P = .001), a significant improvement in breast pain (standard mean difference = -2.68, 95% CI [-3.41, -1.96], P < .00001), and a reduction in breast masses (standard mean difference = -2.87, 95% CI [-3.75, -1.99], P < .00001). CONCLUSION: Sancai therapy significantly improved the overall efficacy, cure rate, and breast pain and reduced breast mass compared with the control groups. However, further large-sample, high-quality, double-blind randomized controlled trials are required to increase the level of evidence. PROTOCOL REGISTRATION NUMBER: INPLASY202380124.


Assuntos
Glândulas Mamárias Humanas , Mastodinia , Humanos , Hiperplasia , Resultado do Tratamento , Ensaios Clínicos Controlados Aleatórios como Assunto
3.
BMC Plant Biol ; 23(1): 607, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38030998

RESUMO

BACKGROUND: Bud sport is a kind of somatic mutation that usually occurred in apple. 'Red Delicious' is considered to be a special plant material of bud sport, whereas the genetic basis of plant mutants is still unknown. In this study, we used whole-genome resequencing and transcriptome sequencing to identify genes related to spur-type and skin-color in the 'Red Delicious' (G0) and its four generation mutants including 'Starking Red' (G1), 'Starkrimson' (G2), 'Campbell Redchief' (G3) and 'Vallee Spur' (G4). RESULTS: The number of single nucleotide polymorphisms (SNPs), insertions and deletions (InDels) and structural variations (SVs) were decreased in four generation mutants compared to G0, and the number of unique SNPs and InDels were over 9-fold and 4-fold higher in G1 versus (vs.) G2 and G2 vs. G3, respectively. Chromosomes 2, 5, 11 and 15 carried the most SNPs, InDels and SVs, while chromosomes 1 and 6 carried the least. Meanwhile, we identified 4,356 variation genes by whole-genome resequencing and transcriptome, and obtained 13 and 16 differentially expressed genes (DEGs) related to spur-type and skin-color by gene expression levels. Among them, DELLA and 4CL7 were the potential genes that regulate the difference of spur-type and skin-color characters, respectively. CONCLUSIONS: Our study identified potential genes associated with spur-type and skin-color differences in 'Red Delicious' and its four generation mutants, which provides a theoretical foundation for the mechanism of the apple bud sport.


Assuntos
Malus , Malus/genética , Malus/metabolismo , Frutas/genética , Genes de Plantas , Mutação INDEL , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas
4.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(3): 508-514, 2023 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-37380390

RESUMO

The surgical installation accuracy of the components in unicompartmental knee arthroplasty (UKA) is an important factor affecting the joint function and the implant life. Taking the ratio of the medial-lateral position of the femoral component relative to the tibial insert (a/A) as a parameter, and considering nine installation conditions of the femoral component, this study established the musculoskeletal multibody dynamics models of UKA to simulate the patients' walking gait, and investigated the influences of the medial-lateral installation positions of the femoral component in UKA on the contact force, joint motion and ligament force of the knee joint. The results showed that, with the increase of a/A ratio, the medial contact force of the UKA implant was decreased and the lateral contact force of the cartilage was increased; the varus rotation, external rotation and posterior translation of the knee joint were increased; and the anterior cruciate ligament force, posterior cruciate ligament force and medial collateral ligament force were decreased. The medial-lateral installation positions of the femoral component in UKA had little effect on knee flexion-extension movement and lateral collateral ligament force. When the a/A ratio was less than or equalled to 0.375, the femoral component collided with the tibia. In order to prevent the overload on the medial implant and lateral cartilage, the excessive ligament force, and the collision between the femoral component and the tibia, it is suggested that the a/A ratio should be controlled within the range of 0.427-0.688 when the femoral component is installed in UKA. This study provides a reference for the accurate installation of the femoral component in UKA.


Assuntos
Artroplastia do Joelho , Prótese do Joelho , Humanos , Articulação do Joelho/cirurgia , Marcha , Rotação
5.
Nitric Oxide ; 138-139: 51-63, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37364740

RESUMO

Carbon monoxide (CO) has been recognized as a crucial gasotransmitter mainly produced by heme oxygenase (HO)-catalyzed heme degradation in plant. Recent studies have shown that CO plays an important role in regulating growth and development of plant, as well as and responding to a variety of abiotic stresses. Meanwhile, many studies have reported on CO working in combination with other signal molecules to mitigate abiotic stress. Here, we presented a comprehensive overview of recent developments in which CO reduces plant damage caused by abiotic stresses. The regulation of antioxidant system, photosynthetic system, ion balance and transport are the main mechanisms of CO-alleviated abiotic stress. We also proposed and discussed the relationship between CO and other signal molecules, including nitric oxide (NO), hydrogen sulfide (H2S), hydrogen gas (H2), abscisic acid (ABA), indole 3-acetic acid (IAA), gibberellin (GA), cytokine (CTK), salicylic acid (SA), jasmonic acid (JA), hydrogen peroxide (H2O2) and calcium ion (Ca2+). Furthermore, the important role of HO genes in alleviating abiotic stress was also discussed. We proposed promising and new research directions for the study of plant CO, which can provide further insights on the role of CO in plant growth and development under abiotic stress.


Assuntos
Heme , Sulfeto de Hidrogênio , Monóxido de Carbono/metabolismo , Peróxido de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/metabolismo , Estresse Fisiológico , Plantas/metabolismo , Heme Oxigenase (Desciclizante)
6.
Plant Cell Rep ; 42(8): 1345-1364, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37253815

RESUMO

KEY MESSAGE: The 14-3-3 family is more highly conserved among monocotyledons, and overexpression of MdGRF13 improved drought and salt tolerance in transgenic Arabidopsis thaliana. The 14-3-3 are highly conserved regulatory proteins found in eukaryotes and play an essential role in plant growth, development and stress response. However, the 14-3-3 gene family evolution in monocotyledons and dicotyledons and the biological functions of the MdGRF13 under abiotic stress remain unknown. In our study, 195 members of the 14-3-3 family were identified from 12 species and divided into ε group and the Non-ε group. Synteny analysis within the 14-3-3 family indicated that segmental duplication events contributed to the expansion of the family. Selective pressure analysis indicated that purifying selection was a vital force in the 14-3-3 genes evolution, and monocotyledons had a lower million years ago (Mya) mean values than dicotyledons. Meanwhile, the codon adaptation index (CAI) and frequency of optical codons (FOP) are higher and the effective number of codons (Nc) is lower in monocotyledons 14-3-3 genes compared to dicotyledons. Moreover, the yeast two-hybrid (Y2H) demonstrated that MdGRF13 interacts with MdRD22, MdLHP1a and MdMORF1. Significantly, the malondialdehyde (MDA) content and relative conductivity were decreased, while the superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities were increased in transgenic Arabidopsis compared to the wild type (WT) under drought and salt stress. These results suggest that overexpression of MdGRF13 significantly improved the tolerance to drought and salt stress in transgenic Arabidopsis. Thus, our results provide a theoretical basis for exploring the evolution and function of the 14-3-3 gene family in monocotyledons and dicotyledons.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição/genética , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Secas
7.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835472

RESUMO

Protein phosphatase 2C (PP2C) is a negative regulator of serine/threonine residue protein phosphatase and plays an important role in abscisic acid (ABA) and abiotic-stress-mediated signaling pathways in plants. The genome complexity of woodland strawberry and pineapple strawberry is different due to the difference in chromosome ploidy. This study conducted a genome-wide investigation of the FvPP2C (Fragaria vesca) and FaPP2C (Fragaria ananassa) gene family. Fifty-six FvPP2C genes and 228 FaPP2C genes were identified from the woodland strawberry and pineapple strawberry genomes, respectively. FvPP2Cs were distributed on seven chromosomes, and FaPP2Cs were distributed on 28 chromosomes. The size of the FaPP2C gene family was significantly different from that of the FvPP2C gene family, but both FaPP2Cs and FvPP2Cs were localized in the nucleus, cytoplasm, and chloroplast. Phylogenetic analysis revealed that 56 FvPP2Cs and 228 FaPP2Cs could be divided into 11 subfamilies. Collinearity analysis showed that both FvPP2Cs and FaPP2Cs had fragment duplication, and the whole genome duplication was the main cause of PP2C gene abundance in pineapple strawberry. FvPP2Cs mainly underwent purification selection, and there were both purification selection and positive selection effects in the evolution of FaPP2Cs. Cis-acting element analysis found that the PP2C family genes of woodland and pineapple strawberries mainly contained light responsive elements, hormone responsive elements, defense and stress responsive elements, and growth and development-related elements. The results of quantitative real-time PCR (qRT-PCR) showed that the FvPP2C genes showed different expression patterns under ABA, salt, and drought treatment. The expression level of FvPP2C18 was upregulated after stress treatment, which may play a positive regulatory role in ABA signaling and abiotic stress response mechanisms. This study lays a foundation for further investigation on the function of the PP2C gene family.


Assuntos
Ananas , Fragaria , Proteína Fosfatase 2C/metabolismo , Fragaria/genética , Ananas/metabolismo , Filogenia , Estresse Fisiológico/genética , Fosfoproteínas Fosfatases/metabolismo , Ácido Abscísico/metabolismo , Florestas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética
8.
Physiol Mol Biol Plants ; 29(11): 1717-1731, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38162916

RESUMO

The conserved BURP-containing proteins are specific to plants and play a crucial role in plant growth, development, and response to abiotic stresses. However, less is known about the systematic characterization of BURP-containing proteins in apple. This study aimed to identify and analyze all BURP-containing genes in the apple genome, as well as to examine their expression patterns through various bioinformatics methods. Eighteen members of BURP-containing genes were identified in apple, six members lacked signal peptides, and the secondary structure was mainly a Random coil of BURP-containing genes. Gene structure and Motif analysis showed that proteins have similar structures and are conserved at the C-terminal. Cis-acting element analysis revealed that the proteins contain phytohormone and stress response elements, and chromosomal localization revealed that the family is unevenly distributed across eight chromosomes, with duplication of fragments leading to the expansion of family proteins. Tissue expression showed that MdPG3 and MdPG4 were expressed in different tissues and different varieties, MdRD2 and MdRD7 were highly expressed in 'M74' fruits and MdRD7 in 'M49' leaves, while MdUSP1 was highly expressed in 'GD' roots. The quantitative real-time PCR analysis showed that the expressions of six and seven genes were significantly up-regulated under NaCl and PEG treatments, respectively, whereas MdRD7 was significantly up-regulated under NaCl and PEG treatment over time. This study offers a comprehensive identification and expression analysis of BURP-containing proteins in apple. The findings provide a theoretical foundation for further exploration of the functions of this protein family. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01393-7.

9.
Langmuir ; 34(46): 13871-13881, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30376631

RESUMO

This research investigated the effect of a high-voltage external electric field on the ordered structure of molecular chains and hole mobility in regioregular poly(3-hexylthiophene) (P3HT) with different molecular weights through X-ray diffraction, atomic force microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, micro-Raman spectroscopy, UV-vis spectroscopy, photoluminescence spectroscopy, and organic field-effect transistors. The optimal magnitude of the external electric field was 5000 V/cm. With the optimized electric field applied to a series of P3HT films, the carrier mobility of all P3HT films increased, and the increase rate changed from 105% to 56%, closely depending on the increase in molecular weight from 33 kg/mol to 100 kg/mol. The results indicated that the increase in carrier mobility was attributed to the P3HT conformation order, which was controlled by the external electric field. Molecular weight was a critical factor in determining the P3HT conformation response to the external electric field. The external electric field orientated lower-molecular-weight (33 kg/mol) P3HT into ordered structures more obviously than higher-molecular-weight (100 kg/mol) P3HT. This research contributes to the understanding of the effect of an external electric field on the ordered structure of the chains and carrier mobility in P3HT with different molecular weights. This research also reveals the regularity and mechanism of the formation of ordered structures and essentially enhances the carrier mobility of P3HT films with different molecular weights, to fabricate photovoltaic devices with high efficiency, based on polymer physics.

10.
ACS Appl Mater Interfaces ; 10(33): 28093-28102, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30058322

RESUMO

In this research, the effect of external fields (solvent, temperature, solution concentration, and external force) on dynamic evolution from chain disorder to order of poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2- b:4,5- b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4- b]thiophenediyl]] (PTB7) condensed state structures was explored by UV-vis absorption spectra, atomic force microscope, and transmission electron microscopy (TEM). It was found that PTB7 main chains presented amorphous conformations induced by the poor solvent 1,2-dichloroethane. However, the local ordered aggregation appeared in amorphous conformations when the solubility of the poor solvent was again lowered by reducing temperature. It is worth noting that the size of ordered aggregation was further increased with the decrease of solution concentration or increase of external force. It was found that there were two main PTB7 absorption peaks in the UV-vis absorption spectra; we denoted A0 -0 for the intensity of the lower energy absorption peak and A0-1 for the intensity of the higher energy absorption peak. The ratio R = A0-0/ A0-1 was used to characterize the dynamic evolution from disorder to order of the PTB7 condensed state structures in absorption spectra. It increased from 0.94 for PTB7 amorphous state to 1.25 for PTB7 large-size ordered aggregation. The dynamic evolution from chain disorder to order could also be distinctly observed by TEM. It was inferred that PTB7 condensed state structures (amorphous state, local ordered aggregation, and large-scale ordered aggregation) might exist simultaneously because of the complexity of copolymer conformations. This research is meaningful to establish physical basis for the molecule design and the synthesis of materials to enhance photoelectronic device efficiency based on condensed matter physics of conjugated polymer.

11.
J Nanosci Nanotechnol ; 15(7): 5384-90, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26373148

RESUMO

The maghemite particulate nanosheets (MPNs) are prepared in solvothermal system by connecting the nanoparticles in two-dimension. The interconnected MPNs sustain a mesopores structure with a high accessible surface area of 164 m2/g, and have a high performance for Cr6+ adsorption. The Cr6+ removal process fit with Langmuir adsorption model with an adsorption capacity of 20.41 mg/g. The purified solution could reach a residual concentration of 0.002 mg/L for MPNs, which is much less than the concentration in the solution of 0.249 mg/L when the nanoparticles are used. The synthesized MPNs with a saturation magnetization of 70.51 emu/g at room temperature can be easily collected and separated by an external magnet in liquid. Exchange coupling and shape anisotropy are the main reason for the higher Ms of MPNs. The unique structure with large surface area and high saturation magnetization make the MPNs favourable for the application of magnetic separation.


Assuntos
Cromatos/química , Compostos Férricos/química , Nanopartículas/química , Águas Residuárias/química , Purificação da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA