RESUMO
Rare-earth-doped silica-based composite glasses (Re-SCGs) are widely used as high-quality laser gain media in defense, aerospace, energy, power, and medical applications. The variable regional chemical environments of Re-SCGs can induce new photoluminescence properties of rare-earth ions but can cause the selective aggregation of rare-earth ions, limiting the application of Re-SCGs in the field of high-power lasers. Here, topological engineering is proposed to adjust the degree of cross-linking of phase-separation network chains in Re-SCGs. A combination of experimental and theoretical characterization techniques suggested that the selective aggregation of rare-earth ions originates from the formation of phase-separated structures in glasses. The decomposition of nanoscale phase separation structures to the sub-nanometer scale, enabled by incorporating Al3+ ions, not only maintains the high luminescence efficiency of rare earth ions but also increases light transmittance and reduces light scattering. Furthermore, our investigation encompassed the exploration of the inhibitory mechanism of Al3+ ions on phase-separation structures, as well as their influence on the spectral characteristics of Re-SCGs. This work provides a new design concept for composite glass materials doped with rare-earth ions and could broaden their application in the field of high-power lasers.
RESUMO
AIM: To investigate the protective effect of magnesium isoglycyrrhizinate (MgIG) on excessive hepatectomy animal model and its possible mechanism. METHODS: We used the standard 90% hepatectomy model in Sprague-Dawley rats developed using the modified Emond's method, in which the left, middle, right upper, and right lower lobes of the liver were removed. Rats with 90% liver resection were divided into three groups, and were injected intraperitoneally with 3 mL saline (control group), 30 mg/kg (low-dose group) and 60 mg/kg (high-dose group) of MgIG, respectively. Animals were sacrificed at various time points and blood was drawn from the vena cava. Biochemical tests were performed with an automatic biochemical analyzer for the following items: serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), glutamyl endopeptidase, total bilirubin (TBil), direct bilirubin (DBil), total protein, albumin, blood glucose (Glu), hyper-sensitivity C-reactive protein, prothrombin time (PT), and thrombin time (TT). Postoperative survival time was observed hourly until death. Hepatocyte regeneration was analyzed by immunohistochemistry. Serum inflammatory cytokines (IL-1, IL-6, IL-10, and iNOS) was analyzed by ELISA. STAT3 protein and mRNA were analyzed by Western blot and quantitative reverse-transcription PCR, respectively. RESULTS: The high-dose group demonstrated a significantly prolonged survival time, compared with both the control and the low-dose groups (22.0 ± 4.7 h vs 8.9 ± 2.0 vs 10.3 ± 3.3 h, P = 0.018). There were significant differences among the groups in ALT, Glu and PT levels starting from 6 h after surgery. The ALT levels were significantly lower in the MgIG treated groups than in the control group. Both Glu and PT levels were significantly higher in the MgIG treated groups than in the control group. At 12 h, ALT, AST, TBil, DBil and TT levels showed significant differences between the MgIG treated groups and the control group. No significant differences in hepatocyte regeneration were found. Compared to the control group, the high-dose group showed a significantly increase in serum inflammatory cytokines IL-1 and IL-10, and a decrease in IL-6. Both STAT3 protein and mRNA levels were significantly lower in the MgIG treated groups than in the control group at 6 h, 12 h, and 18 h after surgery. CONCLUSION: High-dose MgIG can extend survival time in rats after excessive hepatectomy. This hepatoprotective effect is mediated by inhibiting the inflammatory response through inhibition of the STAT3 pathway.
Assuntos
Anti-Inflamatórios/farmacologia , Hepatectomia/efeitos adversos , Inflamação/prevenção & controle , Fígado/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Saponinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Triterpenos/farmacologia , Animais , Biomarcadores/sangue , Coagulação Sanguínea/efeitos dos fármacos , Citocinas/sangue , Citoproteção , Relação Dose-Resposta a Droga , Inflamação/sangue , Inflamação/genética , Mediadores da Inflamação/sangue , Fígado/metabolismo , Fígado/patologia , Fígado/cirurgia , Regeneração Hepática/efeitos dos fármacos , Masculino , Modelos Animais , Ratos Sprague-Dawley , Fator de Transcrição STAT3/genética , Fatores de TempoRESUMO
AIM: To analyze the expression profiles of long non-coding RNAs (lncRNAs) in hepatocellular carcinoma. METHODS: Hepatocellular carcinoma (HCC) tissues and matched adjacent non-tumor (NT) liver tissues were collected from 29 patients with HCC, immediately after liver resection, between March 2011 and July 2013. The diagnosis of HCC was made based on histological examination. Differentially expressed lncRNAs between HCC and NT tissues were revealed through microarray-based lncRNAs expression profiling. Further, quantification of selected lncRNAs was performed using quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). RESULTS: Six hundred and fifty-nine lncRNAs were differentially expressed between HCC and NT tissues, of which five [TCONS_00018278, AK093543, D16366, ENST00000501583, NR_002819 (MALAT1)] were selected for validation. Four of them were significantly downregulated in HCC tissues compared with NT tissues (P = 0.012, 0.045, 0.000 and 0.000, respectively), and the expression level of MALAT1 showed no significant difference (P = 0.114). CONCLUSION: This study identified a set of lncRNAs differentially expressed in HCC tissues and provided useful information for exploring potential therapeutic targets and diagnostic biomarkers of this cancer.