Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 224
Filtrar
1.
Cancer Immunol Immunother ; 73(7): 120, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713243

RESUMO

PURPOSE: The optimal treatment after neoadjuvant chemoimmunotherapy for patients with stage III non-small cell lung cancer (NSCLC) is unclear. This study aimed at comparing the efficacy and safety of chemoradiotherapy and surgery after neoadjuvant chemoimmunotherapy in stage III NSCLC. MATERIALS AND METHODS: We conducted a real-world multicenter retrospective study on patients with stage III NSCLC who received surgery or chemoradiotherapy after neoadjuvant chemoimmunotherapy between October 2018 and December 2022. Progression-free survival (PFS) and overall survival (OS) were assessed from the initiation of neoadjuvant treatment and estimated by the Kaplan‒Meier method. Univariate and multivariate Cox regression models were used to examine potential prognostic factors. One-to-one propensity score matching (PSM) was used to further minimize confounding. RESULTS: A total of 239 eligible patients were enrolled, with 104 (43.5%) receiving surgery and 135 (56.5%) receiving CRT. After 1:1 PSM, 1- and 2-year PFS rates in patients receiving radical surgery (rSurgery group) vs. patients receiving definitive cCRT (dCCRT group) were 80.0% vs. 79.2% and 67.2% vs. 53.1%, respectively (P = 0.774). One- and 2-year OS rates were 97.5% vs. 97.4% and 87.3% vs. 89.9%, respectively (P = 0.558). Patients in the dCCRT group had a numerically lower incidence of distant metastases compared to those in the rSurgery group (42.9% vs. 70.6%, P = 0.119). The incidence of treatment-related adverse events was similar in both groups, except that the incidence of grade 3/4 hematological toxicity was significantly higher in the dCCRT group (30.0% vs. 10.0%, P = 0.025). CONCLUSION: Following neoadjuvant chemoimmunotherapy, definitive concurrent chemoradiotherapy may achieve noninferior outcomes to radical surgery in stage III NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Quimiorradioterapia , Neoplasias Pulmonares , Terapia Neoadjuvante , Estadiamento de Neoplasias , Humanos , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Feminino , Masculino , Estudos Retrospectivos , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/mortalidade , Terapia Neoadjuvante/métodos , Pessoa de Meia-Idade , Quimiorradioterapia/métodos , Idoso , Imunoterapia/métodos , Adulto , Prognóstico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
2.
Nat Commun ; 15(1): 4108, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750011

RESUMO

MAPK pathway-driven tumorigenesis, often induced by BRAFV600E, relies on epithelial dedifferentiation. However, how lineage differentiation events are reprogrammed remains unexplored. Here, we demonstrate that proteostatic reactivation of developmental factor, TBX3, accounts for BRAF/MAPK-mediated dedifferentiation and tumorigenesis. During embryonic development, BRAF/MAPK upregulates USP15 to stabilize TBX3, which orchestrates organogenesis by restraining differentiation. The USP15-TBX3 axis is reactivated during tumorigenesis, and Usp15 knockout prohibits BRAFV600E-driven tumor development in a Tbx3-dependent manner. Deleting Tbx3 or Usp15 leads to tumor redifferentiation, which parallels their overdifferentiation tendency during development, exemplified by disrupted thyroid folliculogenesis and elevated differentiation factors such as Tpo, Nis, Tg. The clinical relevance is highlighted in that both USP15 and TBX3 highly correlates with BRAFV600E signature and poor tumor prognosis. Thus, USP15 stabilized TBX3 represents a critical proteostatic mechanism downstream of BRAF/MAPK-directed developmental homeostasis and pathological transformation, supporting that tumorigenesis largely relies on epithelial dedifferentiation achieved via embryonic regulatory program reinitiation.


Assuntos
Carcinogênese , Proteínas Proto-Oncogênicas B-raf , Proteínas com Domínio T , Proteínas com Domínio T/metabolismo , Proteínas com Domínio T/genética , Animais , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Camundongos , Diferenciação Celular , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Sistema de Sinalização das MAP Quinases/genética , Regulação Neoplásica da Expressão Gênica , Camundongos Knockout , Feminino , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo
3.
Sci Adv ; 10(18): eadn7556, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38691609

RESUMO

Atomically precise metal nanoclusters (NCs) are emerging as idealized model catalysts for imprecise metal nanoparticles to unveil their structure-activity relationship. However, the directional synthesis of robust metal NCs with accessible catalytic active sites remains a great challenge. In this work, we achieved bulky carboranealkynyl-protected copper NCs, the monomer Cu13·3PF6 and nido-carboranealkynyl bridged dimer Cu26·4PF6, with fair stability as well as accessible open metal sites step by step through external ligand shell modification and metal-core evolution. Both Cu13·3PF6 and Cu26·4PF6 demonstrate remarkable catalytic activity and selectivity in electrocatalytic nitrate (NO3-) reduction to NH3 reaction, with the dimer Cu26·4PF6 displaying superior performance. The mechanism of this catalytic reaction was elucidated through theoretical computations in conjunction with in situ FTIR spectra. This study not only provides strategies for accessing desired copper NC catalysts but also establishes a platform to uncover the structure-activity relationship of copper NCs.

4.
Medicine (Baltimore) ; 103(17): e37902, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38669415

RESUMO

Cinnamon and motherwort are traditional Chinese medicines and are often combined to treat benign prostatic hyperplasia; however, the specific therapeutic mechanisms involved remain unclear. Therefore, in this study, we applied a network pharmacology approach to investigate the potential mechanisms of action of the drug pair cinnamon and motherwort (PCM) for the treatment of benign prostatic hyperplasia. Relevant targets for the use of PCM to treat benign prostatic hyperplasia were obtained through databases. Protein-protein interactions were then identified by the STRING database and core targets were screened. Enrichment analysis was conducted through the Metascape platform. Finally, molecular docking experiments were carried out to evaluate the affinity between the target proteins and ligands of PCM. We identified 22 active ingredients in PCM, 315 corresponding targets and 130 effective targets of PCM for the treatment of benign prostatic hyperplasia. These targets were related to the PI3K-Akt, MAPK, FoxO, TNF, and IL-17 signaling pathways. Network pharmacology was used to identify the effective components and action targets of PCM. We also identified potential mechanisms of action for PCM in the treatment of benign prostatic hyperplasia. Our results provide a foundation for expanding the clinical application of PCM and provide new ideas and directions for further research on the mechanisms of action of PCM and its components for the treatment of benign prostatic hyperplasia.


Assuntos
Cinnamomum zeylanicum , Simulação de Acoplamento Molecular , Farmacologia em Rede , Hiperplasia Prostática , Hiperplasia Prostática/tratamento farmacológico , Masculino , Humanos , Farmacologia em Rede/métodos , Cinnamomum zeylanicum/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Medicina Tradicional Chinesa/métodos
6.
Per Med ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501284

RESUMO

Aim: Steroid-induced osteonecrosis of the femoral head (SONFH) is a severe complication following glucocorticoid therapy. This study aimed to identify the differential mRNA expression and investigate the molecular mechanisms of SONFH. Materials & methods: RNA sequencing was performed in eight SONFH patients, five non-SONFH patients and five healthy individuals. Results: A total of 1555, 3997 and 5276 differentially expressed mRNAs existed between the following combinations: SONFH versus non-SONFH, SONFH versus healthy subjects and non-SONFH versus healthy subjects. Increased ISM1 expression might contribute to a high risk of SONFH through antiangiogenesis. Decreased FOLR3 expression might affect the metabolism of homocysteine, leading to avascular necrosis of the femoral head. KCNJ2, which plays a pivotal role in regulating bone development, was also deregulated. Conclusion: ISM1, FOLR3 and KCNJ2 might be related to the occurrence of SONFH.

7.
Hypertens Res ; 47(5): 1309-1322, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38374239

RESUMO

Atrial fibrillation (AF), the most common cardiac arrhythmia, is an important contributor to mortality and morbidity. Ubquitin-specific protease 7 (USP7), one of the most abundant ubiquitin-specific proteases (USP), participated in many cellular events, such as cell proliferation, apoptosis, and tumourigenesis. However, its role in AF remains unknown. Here, the mice were treated with Ang II infusion to induce the AF model. Echocardiography was used to measure the atrial diameter. Electrical stimulation was programmed to measure the induction and duration of AF. The changes in atrial remodeling were measured using routine histologic analysis. Here, a significant increase in USP7 expression was observed in Ang II-stimulated atrial cardiomyocytes and atrial tissues, as well as in atrial tissues from patients with AF. The administration of p22077, the inhibitor of USP7, attenuated Ang II-induced inducibility and duration of AF, atrial dilatation, connexin dysfunction, atrial fibrosis, atrial inflammation, and atrial oxidase stress, and then inhibited the progression of AF. Mechanistically, the administration of p22077 alleviated Ang II-induced activation of TGF-ß/Smad2, NF-κB/NLRP3, NADPH oxidases (NOX2 and NOX4) signals, the up-regulation of CX43, ox-CaMKII, CaMKII, Kir2.1, and down-regulation of SERCA2a. Together, this study, for the first time, suggests that USP7 is a critical driver of AF and revealing USP7 may present a new target for atrial fibrillation therapeutic strategies.


Assuntos
Angiotensina II , Fibrilação Atrial , Peptidase 7 Específica de Ubiquitina , Animais , Fibrilação Atrial/metabolismo , Fibrilação Atrial/induzido quimicamente , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/prevenção & controle , Peptidase 7 Específica de Ubiquitina/metabolismo , Camundongos , Masculino , Camundongos Endogâmicos C57BL , Átrios do Coração/efeitos dos fármacos , Átrios do Coração/metabolismo , Átrios do Coração/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Humanos , Remodelamento Atrial/efeitos dos fármacos
8.
Mater Today Bio ; 25: 100968, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38312801

RESUMO

Re-endothelialization has been recognized as a promising strategy to address the tissue hyperplasia and subsequent restenosis which are major complications associated with vascular implant/interventional titanium devices. However, the uncontrollable over-proliferation of smooth muscle cells (SMCs) limits the clinical application of numerous modified strategies. Herein, a novel modified strategy involving with a two-step anodic oxidation and annealing treatment was proposed to achieve rapid re-endothelialization function regulated by regular honeycomb nanotexture and specific anatase phase on the titanium surface. Theoretical calculation revealed that the presence of nanotexture reduced the polar component of surface energy, while the generation of anatase significantly enhanced the polar component and total surface energy. Meanwhile, the modified surface with regular nanotexture and anatase phase produced positive effect on the expression of CD31, VE-Cadherin and down-regulated α-SMA proteins expression, indicating excellent capacity of pro-endothelial regeneration and inhibition of SMCs proliferation and migration. One-month in vivo implantation in rabbit carotid arteries further confirmed that modified tube implant surface effectively accelerated confluent endothelial monolayer formation and promoted native-like endothelium tissue regeneration. By contrast, original titanium tube implant induced a disorganized tissue proliferation in the lumen with a high risk of restenosis. Collectively, this study opens us an alternative route to achieve the function that selectively promotes endothelial cells (ECs) growth and suppresses SMCs on the medical titanium surface, which has a great potential in facilitating re-endothelialization on the surface of blood-contacting titanium implant.

9.
Small ; : e2307628, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191883

RESUMO

Injectable bioadhesives are attractive for managing gastric ulcers through minimally invasive procedures. However, the formidable challenge is to develop bioadhesives that exhibit high injectability, rapidly adhere to lesion tissues with fast gelation, provide reliable protection in the harsh gastric environment, and simultaneously ensure stringent standards of biocompatibility. Here, a natural bioadhesive with tunable cohesion is developed based on the facile and controllable gelation between silk fibroin and tannic acid. By incorporating a hydrogen bond disruptor (urea or guanidine hydrochloride), the inherent network within the bioadhesive is disturbed, inducing a transition to a fluidic state for smooth injection (injection force <5 N). Upon injection, the fluidic bioadhesive thoroughly wets tissues, while the rapid diffusion of the disruptor triggers instantaneous in situ gelation. This orchestrated process fosters the formed bioadhesive with durable wet tissue affinity and mechanical properties that harmonize with gastric tissues, thereby bestowing long-lasting protection for ulcer healing, as evidenced through in vitro and in vivo verification. Moreover, it can be conveniently stored (≥3 m) postdehydration. This work presents a promising strategy for designing highly injectable bioadhesives utilizing natural feedstocks, avoiding any safety risks associated with synthetic materials or nonphysiological gelation conditions, and offering the potential for minimally invasive application.

10.
Int J Surg Pathol ; : 10668969231217632, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38173283

RESUMO

Background. Pigmented microcystic chromophobe renal cell carcinoma (RCC) is a subtype of chromophobe RCC. Its distinct histopathologic features are microcystic and microtubular pattern, pigmentation, and microcalcifications. Pigmented microcystic chromophobe RCC has ultrastructure, immunophenotypic structure, and molecular results similar to chromophobe RCC. Methods. We report five tumors of pigmented microcystic chromophobe RCC. Morphological observation and immunohistochemical examination were performed, and clinical and molecular features were analyzed. Results. Microscopically, all five tumors showed brown pigmentation, microcystic, and tubular cystic structures, one tumor presented microscopic calcifications. All tumors were positive for EMA, AE1/AE3, PAX8, KRT7, KIT (CD117), claudin 7, KRT8, and E-cadherin, and three tumors expressed P504S. All tumors were negative for vimentin, CA9, KRT20, TFE3, TFEB, Melan-A, HMB45, FH, SDHB, and GATA3. Ki-67 index varied from less than 1% to 2%. In three tumors, next-generation sequencing of the 688 gene was performed, the results found gene variants with potential clinical significance such as JMJD1C, MYCL, TP53, PI3KCA, KRAS, APC, GLI1, LRRK2, and gene variants with unclear clinical significance such as NTRK1 and RAD50; All patients remained alive over a follow-up period of 8-46 months without tumor recurrence and sarcomatoid transformation. Conclusions. Pigmented microcystic chromophobe RCC has a relatively benign biological behavior, and distant metastases and sarcomatoid transformation are rare. This overview of five additional tumors of pigmented microcystic chromophobe RCC offers further insight into this special subtype of chromophobe RCC.

11.
RSC Adv ; 14(2): 954-962, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38174253

RESUMO

Flame-retardant materials that are mechanically robust, low cost and non-toxic from green and renewable resources are highly demanded in many fields. In this work, aerogels of alginate extracted from seaweeds were fabricated and reinforced with nanoclay. The nanoclay particles increase the molecular ordering (crystallinity) of the aerogels through physical interactions with alginate molecules. They also served as cross-linkers and flame-retardant additives to improve the mechanical strength, elasticity, thermal stability and flame-retarding properties of the aerogels. Under exposure to a butane flame (750 °C), the aerogels maintained their structural integrity and did not produce drips. An optimal loading of nanoclay which led to the best flame retardancy (non-flammable) of the aerogel was determined. The results of this work demonstrate that alginate-nanoclay composite aerogels can be promisingly used as flame-retardant thermal insulation materials.

12.
Heliyon ; 10(1): e23312, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163105

RESUMO

Background: Aortic dissection (AD) is a critical emergency in cardiovascular disease. AD occurs only in specific sites of the aorta, and the variation of shear stress in different aortic segments is a possible cause not reported. This study investigated the key molecules involved in shear stress-induced AD through quantitative bioinformatic analysis of a public RNA sequencing database and clinical tissue sample validation. Methods: Gene expression data from the GSE153434, GSE147026, and GSE52093 datasets were downloaded from the Gene Expression Omnibus. Next, differently expressed genes (DEGs) in each dataset were identified and integrated to identify common AD DEGs. STRING, Cytoscape, and MCODE were used to identify hub genes and crucial clustering modules, and Connectivity Map (CMap) was used to identify positive and negative agents. The same procedure was performed for the GSE160611 dataset to obtain shear stress-induced human aortic endothelial cell (HAEC) DEGs. After the integration of these two DEGs sets to identify shear stress-associated hub DEGs in AD, Gene Ontology Enrichment Analysis was performed. The common chemokine receptors and ligands in AD were identified by analyzing AD's three RNA sequencing datasets. Their origin was verified by analyzing AD single-cell sequencing data and validated by immunoblotting and immunofluorescence. Results: We identified 100 down-regulated and 50 up-regulated AD common DEGs. Enrichment results showed that common DEGs were closely related to blood vessel morphogenesis, muscle structure development, muscle tissue development, and chemotaxis. Among those DEGs, MYC, CCL2, and SPP1 are the three molecules with the highest degree. A crucial cluster of 15 genes was identified using MCODE, which contained inflammation-related genes with elevated expression and muscle cell-related genes with decreased expression, and CCL2 is central to immune-related genes. CMap confirmed MEK inhibitors and ALK inhibitors as possible therapeutic agents for AD. Moreover, 366 shear stress-associated DEGs in HAEC were identified in the GSE160611 dataset. After taking the intersection, we identified five shear stress-associated hub DEGs in AD (ANGPTL4, SNAI2, CCL2, GADD45B, and PROM1), and the enrichment analysis indicated they were related to the endothelial cell apoptotic process. Chemokine CCL2 was the molecule with a high degree in both DEG sets. Besides CCL2, CXCL5 was the only chemokine ligand differentially expressed in the three datasets. Additionally, immunoblotting confirmed the increased expression of CCL2 and CXCL5 in clinical tissue samples. Further research at the single-cell level revealed that CCL2 has multiple origins, and CXCL5 is macrophage-derived. Conclusion: Through integrative analysis, we identified core common AD DEGs and possible therapeutic agents based on these DEGs. We elucidated that the chemokine CCL2 and CXCL5-mediated "Endothelial-Monocyte-Neutrophil" axis may contribute to the development of shear stress-induced AD. These findings provide possible therapeutic targets for the prevention and treatment of AD.

13.
Phytother Res ; 38(1): 82-97, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37807970

RESUMO

Ursolic acid (UA) is a naturally occurring pentacyclic triterpenoid widely found in fruits and vegetables. It has been reported that UA has anti-inflammatory effects. However, its efficacy and mechanism of action in the treatment of chronic prostatitis (CP) remain unclear. This study aimed to investigate the efficacy of UA treatment in CP and further explore the underlying mechanism. CP rat and pyroptosis cell models were established in vivo and in vitro, respectively. The efficacy of UA in inhibiting CP was evaluated via haematoxylin-eosin (HE) staining and measurement of inflammatory cytokines. RNA sequencing and molecular docking were used to predict the therapeutic targets of UA in CP. The expression of pyroptosis-related proteins was examined using various techniques, including immunohistochemistry, immunofluorescence, and flow cytometry. UA significantly ameliorated pathological damage and reduced the levels of proinflammatory cytokines in the CP model rats. RNA sequencing analysis and molecular docking suggested that NLRP3, Caspase-1, and GSDMD may be key targets. We also found that UA decreased ROS levels, alleviated oxidative stress, and inhibited p-NF-κB protein expression both in vivo and in vitro. UA improved pyroptosis morphology as indicated by electron microscope and inhibited the expression of the pyroptosis-related proteins NLRP3, Caspase-1, ASC, and GSDMD, reversed the levels of IL-1ß, IL-18, and lactate dehydrogenase in vivo and in vitro. UA can mitigate CP by regulating the NLRP3 inflammasome-mediated Caspase-1/GSDMD pathway. Therefore, UA may be a potential for the treatment of CP.


Assuntos
Inflamassomos , Prostatite , Humanos , Masculino , Ratos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ácido Ursólico , Piroptose/fisiologia , Caspase 1/metabolismo , Prostatite/tratamento farmacológico , Simulação de Acoplamento Molecular , Gasderminas , Proteínas de Ligação a Fosfato/metabolismo , Proteínas de Ligação a Fosfato/farmacologia
14.
Biomacromolecules ; 25(1): 474-485, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38114427

RESUMO

Hyaluronic acid and zwitterionic hydrogels are soft materials with poor mechanical properties. The unique structures and physiological properties make them attractive candidates for ideal hydrogel dressings, but the crux of lacking satisfying mechanical strengths and adhesive properties is still pendent. In this study, the physical cross-linking of dipole-dipole interactions of zwitterionic pairs was utilized to enhance the mechanical properties of hydrogels. The hydrogels have been prepared by copolymerizing methacrylate hyaluronic (HAGMA) with carboxybetaine methacrylamide (CBMAA) (the mass ratio of [HAGMA]/[CBMAA] is 2:5, 1:5, 1:10, or 1:20), obtaining HA-CB2.5, HA-CB5.0, HA-CB10.0, or HA-CB20.0 hydrogel. Therein, the HA-CB20.0 hydrogel with a high CBMAA content can generate a strong dipole-dipole interaction to form internal physical cross-links, exhibit stretchability and low elastic modulus, and withstand 99% compressive deformation and cyclic compression under strain at 90%. Moreover, the HA-CB20.0 hydrogel is adhesive to diverse substrates, including skin, glass, stainless steel, and plastic. The synergistic effect of HAGMA and CBMAA shows strong anti-biofouling, high water absorption, biodegradability under hyaluronidase, and biocompatibility.


Assuntos
Incrustação Biológica , Ácido Hialurônico , Ácido Hialurônico/química , Metacrilatos , Adesivos , Cimentos de Resina , Hidrogéis/química
15.
Front Immunol ; 14: 1289207, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38090575

RESUMO

Background: Currently, the value of induction chemoimmunotherapy before chemoradiotherapy (CRT) in unresectable stage III non-small cell lung cancer (NSCLC) has not been explored. This study was designed to explore the efficacy and safety of induction chemoimmunotherapy in patients with unresectable stage III NSCLC. Methods: Unresectable stage III NSCLC patients who received CRT with or without induction chemoimmunotherapy between August 2014 and December 2021 were retrospectively enrolled. Progression-free survival (PFS) and overall survival (OS) were assessed from the initiation of treatment and estimated by the Kaplan-Meier method. The potential factors affecting PFS and OS were analyzed by univariate and multivariate Cox regression models. One-to-one propensity score matching (PSM) was used to further minimize confounding. Results: A total of 279 consecutive patients were enrolled, with 53 (19.0%) receiving induction chemoimmunotherapy followed by CRT (I-CRT group), and the remaining 226 (81.0%) receiving CRT alone (CRT group). After PSM, the median PFS was 24.8 months in the I-CRT group vs. 13.3 months in the CRT group (P=0.035). The median OS was not reached (NR) vs. 36.6 months ((P=0.142). The incidence of treatment-related adverse events (TRAEs) was similar in both groups, except that the incidence of hematological toxicity was higher in the I-CRT group (77.1% vs. 58.3%, P=0.049). Compared to induction chemotherapy, induction chemoimmunotherapy demonstrated a superior objective response rate (60.4% vs. 22.2%, P<0.001) and further prolonged PFS (median NR vs. 13.2 months, P=0.009) and OS (median NR vs. 25.9 months, P=0.106) without increasing the incidence of TRAEs in patients receiving concurrent chemoradiotherapy. Conclusion: Induction chemoimmunotherapy is safe and may improve outcomes of CRT in patients with unresectable stage III NSCLC. Moreover, induction chemoimmunotherapy may further improve treatment response and survival outcomes compared to induction chemotherapy before cCRT.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Estudos Retrospectivos , Intervalo Livre de Doença , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Estadiamento de Neoplasias , Quimiorradioterapia/efeitos adversos
17.
Phys Chem Chem Phys ; 25(47): 32378-32386, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37997047

RESUMO

Defect engineering has been considered as an effective way for controlling the heat transport properties of two-dimensional materials. In this work, the effects of point vacancies and grain boundaries on the mechanical and thermal performances of SiC and GeC monolayers are investigated systematically by molecular dynamics calculations. The failure strength in SiC and GeC is decreased by introducing vacancies at room temperature, and the stress-strain relationship can be tuned significantly by different kinds of vacancies. When the grain boundary of 21.78° is applied, the maximal fracture strengths can be as large as 27.56% for SiC and 23.56% for GeC. Also, the thermal properties of the two monolayers show a remarkable dependence on the vacancies and grain boundaries. The high vacancy density in SiC and GeC can induce disordered heat flow and the C/Ge point defect is crucial for thermal conductivity regulation for the Si/GeC monolayer. More importantly, the SiC and GeC monolayers with a grain boundary of 5.09° show excellent interfacial thermal conductance. Our findings are of great importance in understanding SiC and GeC monolayers and seeking their potential applications.

18.
Front Immunol ; 14: 1193081, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37680624

RESUMO

Yolk sac-derived microglia and peripheral monocyte-derived macrophages play a key role during Parkinson's disease (PD) progression. However, the regulatory mechanism of microglia/macrophage activation and function in PD pathogenesis remains unclear. Recombination signal-binding protein Jκ (RBP-J)-mediated Notch signaling regulates macrophage development and activation. In this study, with an 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) hydrochloride-induced acute murine PD model, we found that Notch signaling was activated in amoeboid microglia accompanied by a decrease in tyrosine hydroxylase (TH)-positive neurons. Furthermore, using myeloid-specific RBP-J knockout (RBP-JcKO) mice combined with a PD model, our results showed that myeloid-specific disruption of RBP-J alleviated dopaminergic neurodegeneration and improved locomotor activity. Fluorescence-activated cell sorting (FACS) analysis showed that the number of infiltrated inflammatory macrophages and activated major histocompatibility complex (MHC) II+ microglia decreased in RBP-JcKO mice compared with control mice. Moreover, to block monocyte recruitment by using chemokine (C-C motif) receptor 2 (CCR2) knockout mice, the effect of RBP-J deficiency on dopaminergic neurodegeneration was not affected, indicating that Notch signaling might regulate neuroinflammation independent of CCR2+ monocyte infiltration. Notably, when microglia were depleted with the PLX5622 formulated diet, we found that myeloid-specific RBP-J knockout resulted in more TH+ neurons and fewer activated microglia. Ex vitro experiments demonstrated that RBP-J deficiency in microglia might reduce inflammatory factor secretion, TH+ neuron apoptosis, and p65 nuclear translocation. Collectively, our study first revealed that RBP-J-mediated Notch signaling might participate in PD progression by mainly regulating microglia activation through nuclear factor kappa-B (NF-κB) signaling.


Assuntos
NF-kappa B , Doença de Parkinson , Animais , Camundongos , Microglia , Ativação de Macrófagos , Transdução de Sinais , Dopamina
19.
Molecules ; 28(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37764290

RESUMO

In recent years, the two-dimensional (2D) orthorhombic SiP2 flake has been peeled off successfully by micromechanical exfoliation and it exhibits an excellent performance in photodetection. In this paper, we investigated the mechanical properties and the origin of its anisotropy in an orthorhombic SiP2 monolayer through first-principles calculations, which can provide a theoretical basis for utilizing and tailoring the physical properties of a 2D orthorhombic SiP2 in the future. We found that the Young's modulus is up to 113.36 N/m along the a direction, while the smallest value is only 17.46 N/m in the b direction. The in-plane anisotropic ratio is calculated as 6.49, while a similar anisotropic ratio (~6.55) can also be observed in Poisson's ratio. Meanwhile, the in-plane anisotropic ratio for the fracture stress of the orthorhombic SiP2 monolayer is up to 9.2. These in-plane anisotropic ratios are much larger than in black phosphorus, ReS2, and biphenylene. To explain the origin of strong in-plane anisotropy, the interatomic force constants were obtained using the finite-displacement method. It was found that the maximum of interatomic force constant along the a direction is 5.79 times of that in the b direction, which should be considered as the main origin of the in-plane anisotropy in the orthorhombic SiP2 monolayer. In addition, we also found some negative Poisson's ratios in certain specific orientations, allowing the orthorhombic SiP2 monolayer to be applied in next-generation nanomechanics and nanoelectronics.

20.
Heliyon ; 9(7): e18251, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37539273

RESUMO

Objectives: Acute type A aortic dissection (ATAAD) with severe stenosis or occlusion of the true lumen of aortic arch branch vessels often leads to an increased incidence of severe postsurgical neurological complications and mortality rate. In this study, we aimed to introduce our institutional extra-anatomic revascularization and cannulation strategy with improved postoperative outcomes for better management of patients with cerebral malperfusion in the setting of ATAAD. Methods: Twenty-eight patients with ATAAD complicated by severe stenosis or occlusion of the aortic arch branch vessels, as noted on combined computed tomography angiography of the aorta and craniocervical artery, between January 2021 and June 2022 were included in this study. Basic patient characteristics, surgical procedures, hospitalization stays, and early follow-up results were analyzed. Results: The median follow-up duration was 16.5 months (interquartile range: 11.5-20.5), with a 100% completion rate. The 30-day mortality rates was 7.1% (2/28 patients); two patients had multiple cerebral infarctions on preoperative computed tomography and persistent coma. Postoperative transient neurological dysfunction occurred in 10.7% (3/28) of the patients, and no new permanent neurological dysfunction occurred. Of all the patients, 3.6% (1/28) had novel acute renal failure. No other deaths, secondary surgeries, or serious complications occurred during the early follow-up period. Conclusions: Use of extra-anatomic revascularization and a new cannulation strategy before cardiopulmonary bypass is safe and feasible and may reduce the high incidence of postoperative neurological complications in patients with ATAAD and cerebral malperfusion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA