Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38586013

RESUMO

Immune cell-mediated killing of cancer cells in a solid tumor is prefaced by a multi-step infiltration cascade of invasion, directed migration, and cytotoxic activities. In particular, immune cells must invade and migrate through a series of different extracellular matrix (ECM) boundaries and domains before reaching and killing their target tumor cells. These infiltration events are a central challenge to the clinical success of CAR T cells against solid tumors. The current standard in vitro cell killing assays measure cell cytotoxicity in an obstacle-free, two-dimensional (2D) microenvironment, which precludes the study of 3D immune cell-ECM interactions. Here, we present a 3D combined infiltration/cytotoxicity assay based on an oil-in-water microtechnology. This assay measures stromal invasion following extravasation, migration through the stromal matrix, and invasion of the solid tumor in addition to cell killing. We compare this 3D cytotoxicity assay to the benchmark 2D assay through tumor assembloid cocultures with immune cells and engineered immune cells. This assay is amenable to an array of imaging techniques, which allows direct observation and quantification of each stage of infiltration in different immune and oncological contexts. We establish the 3D infiltration/cytotoxicity assay as an important tool for the mechanistic study of immune cell interactions with the tumor microenvironment.

2.
PLoS Genet ; 19(12): e1011084, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38157491

RESUMO

mDia formin proteins regulate the dynamics and organization of the cytoskeleton through their linear actin nucleation and polymerization activities. We previously showed that mDia1 deficiency leads to aberrant innate immune activation and induces myelodysplasia in a mouse model, and mDia2 regulates enucleation and cytokinesis of erythroblasts and the engraftment of hematopoietic stem and progenitor cells (HSPCs). However, whether and how mDia formins interplay and regulate hematopoiesis under physiological and stress conditions remains unknown. Here, we found that both mDia1 and mDia2 are required for HSPC regeneration under stress, such as serial plating, aging, and reconstitution after myeloid ablation. We showed that mDia1 and mDia2 form hetero-oligomers through the interactions between mDia1 GBD-DID and mDia2 DAD domains. Double knockout of mDia1 and mDia2 in hematopoietic cells synergistically impaired the filamentous actin network and serum response factor-involved transcriptional signaling, which led to declined HSPCs, severe anemia, and significant mortality in neonates and newborn mice. Our data demonstrate the potential roles of mDia hetero-oligomerization and their non-rodent functions in the regulation of HSPCs activity and orchestration of hematopoiesis.


Assuntos
Actinas , Proteínas de Transporte , Camundongos , Animais , Forminas/genética , Forminas/metabolismo , Actinas/genética , Actinas/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Citoesqueleto de Actina/metabolismo , Microtúbulos/metabolismo
3.
bioRxiv ; 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37333379

RESUMO

The fallopian tube has an essential role in several physiological and pathological processes from pregnancy to ovarian cancer. However, there are no biologically relevant models to study its pathophysiology. The state-of-the-art organoid model has been compared to two-dimensional tissue sections and molecularly assessed providing only cursory analyses of the model's accuracy. We developed a novel multi-compartment organoid model of the human fallopian tube that was meticulously tuned to reflect the compartmentalization and heterogeneity of the tissue's composition. We validated this organoid's molecular expression patterns, cilia-driven transport function, and structural accuracy through a highly iterative platform wherein organoids are compared to a three-dimensional, single-cell resolution reference map of a healthy, transplantation-quality human fallopian tube. This organoid model was precision-engineered to match the human microanatomy. One sentence summary: Tunable organoid modeling and CODA architectural quantification in tandem help design a tissue-validated organoid model.

4.
Int J Biochem Cell Biol ; 157: 106375, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36716817

RESUMO

The activation and proliferation of hepatic stellate cells (HSCs) are critical processes for the treatment of liver fibrosis. It is necessary to identify effective drugs for the treatment of liver fibrosis and elucidate their mechanisms of action. Metformin can inhibit HSCs; however, no systematic studies demonstrating the effects of metformin on mitochondria in HSCs have been reported. This study demonstrated that metformin induces mitochondrial fission by phosphorylating AMPK/DRP1 (S616) in HSCs to decrease the expression of α-SMA and collagen. Additionally, metformin repressed the total ATP production rate, especially the production rate of ATP produced through mitochondrial oxidative phosphorylation, by inhibiting the enzymatic activity of complex I. Further analysis revealed that metformin strongly constrained the transcription of mitochondrial genes (ND1-ND6 and ND4L) that encode the core subunits of respiratory chain I. Upregulation of the mRNA expression of HK2 and GLUT1 slightly enhanced glycolysis. Additionally, metformin increased mitochondrial DNA (mtDNA) copy number to suppress the proliferation and activation of HSCs, indicating that mtDNA copy number can alter the fate of HSCs. In conclusion, metformin can induce mitochondrial fragmentation and low-level energy metabolism in HSCs, thereby suppressing HSCs activation and proliferation to reverse liver fibrosis.


Assuntos
Metformina , Humanos , Metformina/farmacologia , Fígado/metabolismo , Células Estreladas do Fígado/metabolismo , Dinâmica Mitocondrial , Transporte de Elétrons , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Metabolismo Energético , DNA Mitocondrial/metabolismo , Trifosfato de Adenosina/metabolismo
5.
Transl Res ; 255: 159-170, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36347490

RESUMO

Clonal hematopoiesis (CH) occurs in hematopoietic stem cells with increased risks of progressing to hematologic malignancies. CH mutations are predominantly found in aged populations and correlate with an increased incidence of cardiovascular and other diseases. Increased lines of evidence demonstrate that CH mutations are closely related to the inflammatory bone marrow microenvironment. In this review, we summarize the recent advances in this topic starting from the discovery of CH and its mutations. We focus on the most commonly mutated and well-studied genes in CH and their contributions to the innate immune responses and inflammatory signaling, especially in the hematopoietic cells of bone marrow. We also aimed to discuss the interrelationship between inflammatory bone marrow microenvironment and CH mutations. Finally, we provide our perspectives on the challenges in the field and possible future directions to help understand the pathophysiology of CH.


Assuntos
Medula Óssea , Hematopoiese Clonal , Humanos , Idoso , Hematopoiese Clonal/genética , Hematopoese/genética , Evolução Clonal , Inflamação/genética , Mutação
6.
iScience ; 25(12): 105554, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36465116

RESUMO

Mammalian terminal erythropoiesis involves chromatin and nuclear condensation followed by enucleation. Late-stage erythroblasts undergo caspase-mediated nuclear opening that is important for nuclear condensation through partial histone release. It remains unknown the dynamic changes of three-dimensional (3D) genomic organization during terminal erythropoiesis. Here, we used Hi-C to determine the chromatin structural change during primary mouse erythroblast terminal differentiation. We also performed RNA-sequencing and ATAC-sequencing under the same experimental setting to further reveal the genome accessibility and gene expression changes during this process. We found that late-stage terminal erythropoiesis involves global loss of topologically associating domains and establishment of inter-chromosomal interactions of the heterochromatin regions, which are associated with globally increased chromatin accessibility and upregulation of erythroid-related genes.

7.
Prostaglandins Other Lipid Mediat ; 163: 106671, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36028068

RESUMO

Activation of hepatic stellate cells (HSCs) is generally recognized as a central driver of liver fibrosis. Metabolism of fatty acids (FA) plays a critical role in the activation of HSCs. Proteomics analysis on lysine acetylation of proteins in activated HSCs in our previous study indicated that acetylation of the lysine residues on ACSF2 is one of the most significantly upregulated sites in activated-HSCs and K179 is its important acetylation site. However, the role of acetylation at K179 of ACSF2 on activation of HSCs and free fatty acids (FFA) metabolism remains largely unknown. The reported study demonstrates that acetylation at K179 of ACSF2 promoted HSCs activation. The targeted lipidomic analysis indicated K179 acetylation of ACSF2 mainly affected long chain fatty acids (LCFA) metabolism, especially oleic acid, elaidic acid and palmitoleic acid. And the liquid chromatography mass spectrometry (LC-MS) analysis further demonstrated the formation of many long-chain acyl-CoAs were catalyzed by acetylation at K179 of ACSF2 including oleic acid, elaidic acid and palmitoleic acid. In conclusion, this study indicated that ACSF2 may be a potential therapeutic targets by regulating the metabolism of LCFA for liver fibrosis.


Assuntos
Células Estreladas do Fígado , Lisina , Ratos , Animais , Células Estreladas do Fígado/metabolismo , Acetilação , Lisina/metabolismo , Lipidômica , Cirrose Hepática/metabolismo , Ácidos Graxos/metabolismo , Ácidos Oleicos/metabolismo
8.
J Clin Invest ; 132(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35900794

RESUMO

Myelodysplastic syndromes (MDS) are age-related myeloid neoplasms with increased risk of progression to acute myeloid leukemia (AML). The mechanisms of transformation of MDS to AML are poorly understood, especially in relation to the aging microenvironment. We previously established an mDia1/miR-146a double knockout (DKO) mouse model phenocopying MDS. These mice develop age-related pancytopenia with oversecretion of proinflammatory cytokines. Here, we found that most of the DKO mice underwent leukemic transformation at 12-14 months of age. These mice showed myeloblast replacement of fibrotic bone marrow and widespread leukemic infiltration. Strikingly, depletion of IL-6 in these mice largely rescued the leukemic transformation and markedly extended survival. Single-cell RNA sequencing analyses revealed that DKO leukemic mice had increased monocytic blasts that were reduced with IL-6 knockout. We further revealed that the levels of surface and soluble IL-6 receptor (IL-6R) in the bone marrow were significantly increased in high-risk MDS patients. Similarly, IL-6R was also highly expressed in older DKO mice. Blocking of IL-6 signaling significantly ameliorated AML progression in the DKO model and clonogenicity of CD34-positive cells from MDS patients. Our study establishes a mouse model of progression of age-related MDS to AML and indicates the clinical significance of targeting IL-6 signaling in treating high-risk MDS.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Animais , Medula Óssea , Interleucina-6/genética , Leucemia Mieloide Aguda/genética , Camundongos , Síndromes Mielodisplásicas/genética , Transdução de Sinais , Microambiente Tumoral
9.
Curr Opin Hematol ; 29(3): 137-143, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35441599

RESUMO

PURPOSE OF REVIEW: The differentiation from colony forming unit-erythroid (CFU-E) cells to mature enucleated red blood cells is named terminal erythropoiesis in mammals. Apart from enucleation, several unique features during these developmental stages include proteome remodeling and organelle clearance that are important to achieve hemoglobin enrichment. Here, we review the recent advances in the understanding of novel regulatory mechanisms in these processes, focusing on the master regulators that link these major events during terminal erythropoiesis. RECENT FINDINGS: Comprehensive proteomic studies revealed a mismatch of protein abundance to their corresponding transcript abundance, which indicates that the proteome remodeling is regulated in a complex way from transcriptional control to posttranslational modifications. Key regulators in organelle clearance were also found to play critical roles in proteome remodeling. SUMMARY: These studies demonstrate that the complexity of terminal erythropoiesis is beyond the conventional transcriptomic centric perspective. Posttranslational modifications such as ubiquitination are critical in terminal erythroid proteome remodeling that is also closely coupled with organelle clearance.


Assuntos
Eritropoese , Proteoma , Animais , Diferenciação Celular , Eritroblastos/metabolismo , Humanos , Mamíferos/metabolismo , Organelas/metabolismo , Proteoma/metabolismo , Proteômica
10.
Int Immunopharmacol ; 108: 108683, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35344814

RESUMO

Liver fibrosis, a disease characterized by the excessive accumulation of extracellular matrix originating from activated hepatic stellate cells (HSCs), is a common pathological response to chronic liver injury resulting from a variety of insults. However, drugs that effectively block the activation of HSCs have still not been adequately investigated. This study demonstrates that metformin decreased the number of activated-HSCs through induction of apoptosis, but did not impact numbers of hepatocytes. Metformin upregulated BAX activation with facilitation of BIM, BAD and PUMA; downregulated Bcl-2 and Bcl-xl, but did not affect Mcl-1. Additionally, metformin induced cytochrome c release from mitochondria into the cytoplasm, directly triggering caspase-9-mediated mitochondrial apoptosis. The decline in mitochondrial membrane potential (ΔΨm) and deposition of superoxide in mitochondria accelerated the destruction of the integrity of mitochondrial membrane. Moreover, we verified the therapeutic effect of metformin in our mouse model of liver fibrosis associated with nonalcoholic steatohepatitis (NASH) in which hepatic function, NASH lesions and fibrosis were improved by metformin. In conclusion, this study indicated that metformin has significant therapeutic value in NASH-derived liver fibrosis by inducing apoptosis in HSCs, but does not affect the proliferation of hepatocytes.


Assuntos
Metformina , Hepatopatia Gordurosa não Alcoólica , Animais , Apoptose , Células Estreladas do Fígado , Fígado/patologia , Cirrose Hepática/induzido quimicamente , Metformina/farmacologia , Metformina/uso terapêutico , Camundongos , Mitocôndrias/patologia , Hepatopatia Gordurosa não Alcoólica/patologia
11.
Exp Cell Res ; 400(1): 112493, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33485843

RESUMO

Most cancer deaths are due to the colonization of tumor cells in distant organs. More evidence indicates that overexpression of RACGAP1 plays a critical role in cancer metastasis. However, the underlying mechanism still remains poorly understood. Here we found that RACGAP1 promoted breast cancer metastasis through regulating mitochondrial quality control. Overexpression of RACGAP1 in breast cancer cells led to the fragmentation of mitochondria, increased mitophagy intensity, mitochondrial turnover, and aerobic glycolysis ATP production. We showed that RACGAP1 promoted mitochondrial fission through recruiting ECT2 during anaphase and subsequently had activated ERK-DRP1 pathway. We further demonstrated the phosphorylation of RACGAP1 is essential for its ability of binding with ECT2 and its downstream effects. RACGAP1 overexpression also increased the expression of PGC-1a, a key mitochondrial biogenesis regulator, presumably by the increased mitophagy intensity induced by RACGAP1. PGC-1a increased the enrichment of DNMT1 in mitochondria, mitochondrial DNMT1 augmented mitochondrial DNA methylation and upregulated mitochondrial genome transcription. Our data indicated that RACGAP1 simultaneously facilitated mitophagy and mitochondrial biogenesis through regulating DRP1 phosphorylation and PGC-1a expression, eventually improved mitochondrial quality control in breast cancer cells. Our study provided a new angle in understanding the RACGAP1-overexpression related malignancy in breast cancer patients.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/secundário , Proteínas Ativadoras de GTPase/metabolismo , Regulação Neoplásica da Expressão Gênica , Mitocôndrias/patologia , Proteínas Proto-Oncogênicas/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proliferação de Células , Feminino , Proteínas Ativadoras de GTPase/genética , Humanos , Camundongos , Camundongos Nus , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Mitofagia , Biogênese de Organelas , Fosforilação Oxidativa , Proteínas Proto-Oncogênicas/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Mol Oncol ; 15(2): 543-559, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33252198

RESUMO

Long non-coding RNAs (lncRNAs) are emerging as key molecules in various cancers, yet their potential roles in the pathogenesis of breast cancer are not fully understood. Herein, using microarray analysis, we revealed that the lncRNA RACGAP1P, the pseudogene of Rac GTPase activating protein 1 (RACGAP1), was up-regulated in breast cancer tissues. Its high expression was confirmed in 25 pairs of breast cancer tissues and 8 breast cell lines by qRT-PCR. Subsequently, we found that RACGAP1P expression was positively correlated with lymph node metastasis, distant metastasis, TNM stage, and shorter survival time in 102 breast cancer patients. Then, in vitro and in vivo experiments were designed to investigate the biological function and regulatory mechanism of RACGAP1P in breast cancer cell lines. Overexpression of RACGAP1P in MDA-MB-231 and MCF7 breast cell lines increased their invasive ability and enhanced their mitochondrial fission. Conversely, inhibition of mitochondrial fission by Mdivi-1 could reduce the invasive ability of RACGAP1P-overexpressing cell lines. Furthermore, the promotion of mitochondrial fission by RACGAP1P depended on its competitive binding with miR-345-5p against its parental gene RACGAP1, leading to the activation of dynamin-related protein 1 (Drp1). In conclusion, lncRNA RACGAP1P promotes breast cancer invasion and metastasis via miR-345-5p/RACGAP1 pathway-mediated mitochondrial fission.


Assuntos
Neoplasias da Mama/metabolismo , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , RNA Longo não Codificante/metabolismo , RNA Neoplásico/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Nus , MicroRNAs/genética , Mitocôndrias/genética , Mitocôndrias/patologia , Invasividade Neoplásica , RNA Longo não Codificante/genética , RNA Neoplásico/genética
13.
Protein Cell ; 11(9): 661-679, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32277346

RESUMO

Dysregulation of circadian rhythms associates with cardiovascular disorders. It is known that deletion of the core circadian gene Bmal1 in mice causes dilated cardiomyopathy. However, the biological rhythm regulation system in mouse is very different from that of humans. Whether BMAL1 plays a role in regulating human heart function remains unclear. Here we generated a BMAL1 knockout human embryonic stem cell (hESC) model and further derived human BMAL1 deficient cardiomyocytes. We show that BMAL1 deficient hESC-derived cardiomyocytes exhibited typical phenotypes of dilated cardiomyopathy including attenuated contractility, calcium dysregulation, and disorganized myofilaments. In addition, mitochondrial fission and mitophagy were suppressed in BMAL1 deficient hESC-cardiomyocytes, which resulted in significantly attenuated mitochondrial oxidative phosphorylation and compromised cardiomyocyte function. We also found that BMAL1 binds to the E-box element in the promoter region of BNIP3 gene and specifically controls BNIP3 protein expression. BMAL1 knockout directly reduced BNIP3 protein level, causing compromised mitophagy and mitochondria dysfunction and thereby leading to compromised cardiomyocyte function. Our data indicated that the core circadian gene BMAL1 is critical for normal mitochondria activities and cardiac function. Circadian rhythm disruption may directly link to compromised heart function and dilated cardiomyopathy in humans.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Cardiomiopatia Dilatada/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias Cardíacas/metabolismo , Dinâmica Mitocondrial , Proteínas Mitocondriais/metabolismo , Miócitos Cardíacos/metabolismo , Fatores de Transcrição ARNTL/genética , Animais , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Linhagem Celular , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/patologia , Proteínas Mitocondriais/genética
14.
Oncol Rep ; 41(2): 1284-1292, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30483750

RESUMO

SET domain bifurcated 1 (SETDB1) is a histone H3 lysine 9 methyltransferase that is highly expressed in various tumor types, including breast cancer. However, how SETDB1 functions in breast cancer is unclear. In the present study, proliferation, migration and invasion assays were performed to explore the role of SETDB1 in breast cancer cells. SETDB1 downregulation in BT549 and MDA­MB­231 cells reduced cell proliferation, whereas upregulation in MCF7 and T47D cells enhanced proliferation. Depletion of SETDB1 suppressed cell migration and invasion in vitro and reduced lung metastasis in vivo. By contrast, SETDB1 overexpression enhanced cell migration and invasiveness. Notably, SETDB1 overexpression appeared to induce epithelial­mesenchymal transition (EMT) in MCF7 cells. Mechanistic investigations indicated that SETDB1 acts as an EMT inducer by binding directly to the promoter of the transcription factor Snail. Thus, SETDB1 is involved in breast cancer metastasis and may be a therapeutic target for treating patients with breast cancer.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proteínas de Transporte/metabolismo , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Nucleares/metabolismo , Fatores de Transcrição da Família Snail/genética , Neoplasias da Mama/metabolismo , Proteínas de Transporte/genética , Movimento Celular/genética , Proliferação de Células/genética , Regulação para Baixo , Feminino , Humanos , Células MCF-7 , Invasividade Neoplásica , Proteínas Nucleares/genética , Regiões Promotoras Genéticas
15.
Oncol Lett ; 15(4): 5257-5263, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29552165

RESUMO

Erythropoietin-producing hepatocellular A6 (EphA6) is a member of the Eph receptor tyrosine kinase family, which has been implicated in tumorigenesis. However, little is known about the expression and function of EphA6 in breast cancer. The aim of the present study was to investigate the expression of EphA6 and the possible association between EphA6 and clinicopathological characteristics in breast cancer. In the present study, EphA6 mRNA expression was measured in 26 paired breast cancer tissues and adjacent non-cancerous tissues by reverse transcription-quantitative polymerase chain reaction. Additionally, the protein expression of EphA6 in breast cancer tissues from 116 patients was examined by immunohistochemistry, and the prognostic value for patients with breast cancer was evaluated. The results of the present study indicated that EphA6 mRNA and protein expression in breast cancer was significantly higher than that in adjacent non-cancerous tissues (P<0.001). EphA6 overexpression was significantly associated with a high histological grade (P<0.001), overexpression of human epidermal growth factor 2 (HER-2; P=0.0106), low estrogen receptor expression (P=0.0247) and low progesterone receptor expression (P=0.0015). Furthermore, the increased expression of EphA6 was demonstrated to be associated with breast cancer subtypes (P=0.0164). Kaplan-Meier curves demonstrated that high EphA6 expression was associated with lower overall survival rates in patients with breast cancer (P=0.015). Univariate and multivariate analysis revealed that high EphA6 expression, Tumor-Node-Metastasis classification and subtype were independent prognostic factors for patients with breast cancer (all P<0.05). In conclusion, EphA6 may serve an important role in breast carcinogenesis and may pose as a novel prognostic indicator and therapeutic target for breast cancer, particularly in patients with steroid receptor negative expression and HER-2 overexpression.

16.
Int J Oncol ; 50(4): 1233-1240, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28350062

RESUMO

Hepatocellular carcinoma-related protein 1 (HCRP1), also known as human vacuolar protein sorting 37 homologue A (hVps37A), has not been detected or is significantly downregulated in hepatocellular carcinoma (HCC) tissues. However, information on the regulatory mechanisms of HCRP1 in HCC remains unclear. Here we found that the downregulation of HCRP1 in HepG2 cells (with low invasion capacity) significantly enhanced migration and invasion, whereas HCRP1 upregulation in SMMC-7721 cells (with high invasion capacity) generated the opposite result. Interestingly, the morphology of HepG2 cells significantly changed from an epithelial to mesenchymal phenotype after HCRP1 knockdown. Moreover, we observed a decrease in the expression of epithelial cell markers E-cadherin and ß-catenin, and an increase in the expression of mesenchymal cell markers N-cadherin and vimentin. We also observed that the downregulation of HCRP1 induced epithelial-mesenchymal transition (EMT) through the transforming growth factor-ß pathway. Together, our findings define a novel function for HCRP1 from the perspective of EMT, which is closely associated with the migration and invasion of HCC cells.

17.
Biochem Biophys Res Commun ; 477(2): 222-8, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27311861

RESUMO

Previous study showed that hepatocellular carcinoma related protein 1 (HCRP1) is decreased in breast cancer. HCRP1 expression is inversely related to epithelial growth factor receptor (EGFR) in breast cancer tissues, and patients with breast cancer expressing lower HCRP1 tended to suffer a shorter life expectancy. However, the detailed biological functions of HCRP1 in breast cancer as well as the interaction between HCRP1 and EGFR remain unexplored. In this study, we examined HCRP1 expression in breast cancer tissues and cell lines by western blot. Thereafter, we performed transwell migration and matrigel invasion assays after siRNA interference and lentiviral vector of HCRP1 infection. To further investigate the interaction between HCRP1 downregulation and EGFR signaling pathway, we evaluated the phosphorylation status of EGFR, Erk1/2 and Akt by western blot following HCRP1-siRNA transfection. Moreover, we investigated the in vivo functions of HCRP1 using a breast cancer xenograft model. We found that HCRP1 depletion significantly promoted breast cancer migration and invasion while HCRP1 overexpression produced an opposite effect. In addition, HCRP1 depletion decreased EGFR degradation and enhanced phosphorylation of EGFR. Interestingly, HCRP1 depletion also led to insensitivity to EGFR inhibitors treatment. The in vivo experiment confirmed the metastasis inhibition function of HCRP1. The present data indicate that HCRP1 inhibits breast cancer metastasis through downregulating EGFR phosphorylation.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/secundário , Movimento Celular , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Receptores ErbB/metabolismo , Invasividade Neoplásica , Neoplasias da Mama/patologia , Feminino , Humanos , Células MCF-7 , Fosforilação , Células Tumorais Cultivadas
18.
Oncotarget ; 7(25): 38612-38625, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27229534

RESUMO

Dysregulated microRNAs play important pathological roles in carcinogenesis that are yet to be fully elucidated. This study was performed to investigate the biological functions of microRNA-320a (miR-320a) in breast cancer and the underlying mechanisms. Function analyses for cell proliferation, cell cycle, and cell invasion/migration, were conducted after miR-320a silencing and overexpression. The specific target genes of miR-320a were predicted by TargetScan algorithm and then determined by dual luciferase reporter assay and rescue experiment. The relationship between miR-320a and its target genes was explored in human breast cancer tissues. We found that miR-320a overexpression could inhibit breast cancer invasion and migration abilities in vitro, while miR-320a silencing could enhance that. In addition, miR-320a could suppress activity of 3'-untranslated region luciferase of metadherin (MTDH), a potent oncogene. The rescue experiment revealed that MTDH was a functional target of miR-320a. Moreover, we found that MTDH was negatively correlated with miR-320a expression, and it was related to clinical outcomes of breast cancer. Further xenograft experiment also showed that miR-320a could inhibit breast cancer metastasis in vivo. Our findings clearly demonstrate that miR-320a suppresses breast cancer metastasis by directly inhibiting MTDH expression. The present study provides a new insight into anti-oncogenic roles of miR-320a and suggests that miR-320a/MTDH pathway is a putative therapeutic target in breast cancer.


Assuntos
Neoplasias da Mama/genética , Moléculas de Adesão Celular/genética , MicroRNAs/genética , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Proteínas de Membrana , Camundongos , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Metástase Neoplásica , Proteínas de Ligação a RNA , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA