Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 276
Filtrar
1.
Sci Total Environ ; 932: 173033, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38723954

RESUMO

Microplastics (MPs) pollution has emerged as a global concern, and wastewater treatment plants (WWTPs) are one of the potential sources of MPs in the environment. However, the effect of polyethylene MPs (PE) on nitrogen (N) removal in moving bed biofilm reactor (MBBR) remains unclear. We hypothesized that PE would affect N removal in MBBR by influencing its microbial community. In this study, we investigated the impacts of different PE concentrations (100, 500, and 1000 µg/L) on N removal, enzyme activities, and microbial community in MBBR. Folin-phenol and anthrone colorimetric methods, oxidative stress and enzyme activity tests, and high-throughput sequencing combined with bioinformation analysis were used to decipher the potential mechanisms. The results demonstrated that 1000 µg/L PE had the greatest effect on NH4+-N and TN removal, with a decrease of 33.5 % and 35.2 %, and nitrifying and denitrifying enzyme activities were restrained by 29.5-39.6 % and 24.6-47.4 %. Polysaccharide and protein contents were enhanced by PE, except for 1000 µg/L PE, which decreased protein content by 65.4 mg/g VSS. The positive links of species interactions under 1000 µg/L PE exposure was 52.07 %, higher than under 500 µg/L (51.05 %) and 100 µg/L PE (50.35 %). Relative abundance of some metabolism pathways like carbohydrate metabolism and energy metabolism were restrained by 0.07-0.11 % and 0.27-0.4 %. Moreover, the total abundance of nitrification and denitrification genes both decreased under PE exposure. Overall, PE reduced N removal by affecting microbial community structure and species interactions, inhibiting some key metabolic pathways, and suppressing key enzyme activity and functional gene abundance. This paper provides new insights into assessing the risk of MPs to WWTPs, contributing to ensuring the health of aquatic ecosystems.


Assuntos
Biofilmes , Reatores Biológicos , Microbiota , Nitrogênio , Polietileno , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água , Nitrogênio/metabolismo , Reatores Biológicos/microbiologia , Poluentes Químicos da Água/análise , Eliminação de Resíduos Líquidos/métodos , Microbiota/efeitos dos fármacos , Microplásticos , Águas Residuárias/química
2.
J Hazard Mater ; 473: 134676, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38788579

RESUMO

Medium-chain fatty acids (MCFAs) production from waste activated sludge (WAS) by chain extension (CE) is a promising technology. However, the effects and mechanisms of CE process on the fate of antibiotic resistance genes (ARGs) remain unclear. In this study, the results showed that the removal efficiency of ARGs was 81.15 % in CE process, suggesting its efficacy in reducing environmental risks. Further, the observed decrease in mobile genetic elements (MGEs) indicated that CE process restricted the horizontal gene transfer (HGT). Complementing this, the increase in soluble organic matters and extracellular 16 S rDNA confirmed that MCFAs production caused bacterial damage. Decreased intracellular ARGs and increased extracellular ARGs further revealed that MCFAs production impaired ARGs hosts, thereby limiting the vertical gene transfer (VGT) of ARGs. Shift of microbial community combined with co-occurrence network analysis demonstrated that functional bacteria without host potential for ARGs were enriched, but potential ARGs and MGEs hosts decreased, showing the role of functional bacterial phylogeny and selection pressure of MCFAs in reducing ARGs. Finally, partial least squares path model was used to systematic verify the mechanism of ARGs removal in CE process, which was attributed to the inhibition of ARGs transmission (HGT and VGT) and shift of microbial community.

3.
J Hazard Mater ; 473: 134579, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38761761

RESUMO

Ciprofloxacin (CIP) has received considerable attention in recent decades due to its high ecological risk. However, little is known about the potential response of macrophytes and microbes to varying levels of CIP exposure in constructed wetlands. Therefore, lab-scale manganese ore-based tidal flow constructed wetlands (MO-TFCWs) were operated to evaluate the responses of macrophytes and microbes to CIP over the long term. The results indicated that total nitrogen removal improved from 79.93% to 87.06% as CIP rose from 0 to 4 mg L-1. The chlorophyll content and antioxidant enzyme activities in macrophytes were enhanced under CIP exposure, but plant growth was not inhibited. Importantly, CIP exposure caused a marked evolution of the substrate microbial community, with increased microbial diversity, expanded niche breadth and enhanced cooperation among the top 50 genera, compared to the control (no CIP). Co-occurrence network also indicated that microorganisms may be more inclined to co-operate than compete. The abundance of the keystone bacterium (involved in nitrogen transformation) norank_f__A0839 increased from 0.746% to 3.405%. The null model revealed drift processes (83.33%) dominated the community assembly with no CIP and 4 mg L-1 CIP. Functional predictions indicated that microbial carbon metabolism, electron transfer and ATP metabolism activities were enhanced under prolonged CIP exposure, which may contribute to nitrogen removal. This study provides valuable insights that will help achieve stable nitrogen removal from wastewater containing antibiotic in MO-TFCWs.

4.
Bioresour Technol ; : 130903, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38801958

RESUMO

Sulfate-dependent ammonium oxidation (Sulfammox) is a critical process linking nitrogen and sulfur cycles. However, the metabolic pathway of microbes driven Sulfammox is still in suspense. The study demonstrate that ammonium was not consumed with sulfate as the sole electron acceptor during long-term enrichment, probably due to inhibition from sulfide accumulation, while ammonium was removed at ∼ 10 mg N/L/d with sulfate and nitrate as electron acceptors. Ammonium and sulfate were converted into nitrogen gas, sulfide, and elemental sulfur. Sulfammox was mainly performed by Candidatus Brocadia sapporoensis and Candidatus Brocadia fulgida, both of which encoded ammonium oxidation pathway and dissimilatory sulfate reduction pathway. Not sulfide-driven autotrophic denitrifiers but Candidatus Kuenenia stuttgartiensis converted nitrate to nitrite with sulfide. The results of this study reveal the specialized metabolism of Sulfammox bacteria (Candidatus Brocadia sapporoensis and Candidatus Brocadia fulgida) and provide insight into microbial relationships during the nitrogen and sulfur cycles.

5.
Environ Res ; 255: 119209, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38782336

RESUMO

Nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) process is a promising wastewater treatment technology, but the slow microbial growth rate greatly hinders its practical application. Although high-level nitrogen removal and excellent biomass accumulation have been achieved in n-DAMO granule process, the formation mechanism of n-DAMO granules remains unresolved. To elucidate the role of functional microbes in granulation, this study attempted to cultivate granules dominated by n-DAMO microorganisms and granules coupling n-DAMO with anaerobic ammonium oxidation (Anammox). After long-term operation, dense granules were developed in the two systems where both n-DAMO archaea and n-DAMO bacteria were enriched, whereas granulation did not occur in the other system dominated by n-DAMO bacteria. Extracellular polymeric substances (EPS) measurement indicated the critical role of EPS production in the granulation of n-DAMO process. Metagenomic and metatranscriptomic analyses revealed that n-DAMO archaea and Anammox bacteria were active in EPS biosynthesis, while n-DAMO bacteria were inactive. Consequently, more EPS were produced in the systems containing n-DAMO archaea and Anammox bacteria, leading to the successful development of n-DAMO granules. Furthermore, EPS biosynthesis in n-DAMO systems is potentially regulated by acyl-homoserine lactones and c-di-GMP. These findings not only provide new insights into the mechanism of granule formation in n-DAMO systems, but also hint at potential strategies for management of the granule-based n-DAMO process.

6.
Water Res ; 256: 121571, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583332

RESUMO

'Candidatus Methanoperedens nitroreducens' is an archaeal methanotroph with global importance that links carbon and nitrogen cycles and great potential for sustainable operation of wastewater treatment. It has been reported to mediate the anaerobic oxidation of methane through a reverse methanogenesis pathway while reducing nitrate to nitrite. Here, we demonstrate that 'Ca. M. nitroreducens' reduces ferric iron forming ammonium (23.1 %) and nitrous oxide (N2O, 46.5 %) from nitrate. These results are supported with the upregulation of genes coding for proteins responsible for dissimilatory nitrate reduction to ammonium (nrfA), N2O formation (norV, cyt P460), and multiple multiheme c-type cytochromes for ferric iron reduction. Concomitantly, an increase in the N2O-reducing SJA-28 lineage and a decrease in the nitrite-reducing 'Candidatus Methylomirabilis oxyfera' are consistent with the changes in 'Ca. M. nitroreducens' end products. These findings demonstrate the highly flexible physiology of 'Ca. M. nitroreducens' in anaerobic ecosystems with diverse electron acceptor conditions, and further reveals its roles in linking methane oxidation to global biogeochemical cycles. 'Ca. M. nitroreducens' could significantly affect the bioavailability of nitrogen sources as well as the emission of greenhouse gas in natural ecosystems and wastewater treatment plants.


Assuntos
Compostos de Amônio , Metano , Nitratos , Óxido Nitroso , Oxirredução , Metano/metabolismo , Óxido Nitroso/metabolismo , Compostos de Amônio/metabolismo , Anaerobiose , Nitratos/metabolismo , Compostos Férricos/metabolismo
7.
Water Res ; 256: 121600, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38640563

RESUMO

A limited understanding of microbial interactions and community assembly mechanisms in constructed wetlands (CWs), particularly with different substrates, has hampered the establishment of ecological connections between micro-level interactions and macro-level wetland performance. In this study, CWs with distinct substrates (zeolite, CW_A; manganese ore, CW_B) were constructed to investigate the nutrient removal efficiency, microbial interactions, metabolic mechanisms, and ecological assembly for treating rural sewage with a low carbon-to-nitrogen ratio. CW_B showed higher removal of ammonia nitrogen and total nitrogen by about 1.75-6.75 % and 3.42-5.18 %, respectively, compared to CW_A. Candidatus_Competibacter (denitrifying glycogen-accumulating bacteria) was the dominant microbial genus in CW_A, whereas unclassified_f_Blastocatellaceae (involved in carbon and nitrogen transformation) dominated in CW_B. The null model revealed that stochastic processes (drift) dominated community assembly in both CWs; however, deterministic selection accounted for a higher proportion in CW_B. Compared to those in CW_A, the interactions between microbes in CW_B were more complex, with more key microbes involved in carbon, nitrogen, and phosphorus conversion; the synergistic cooperation of functional bacteria facilitated simultaneous nitrification-denitrification. Manganese ores favour biofilm formation, increase the activity of the electron transport system, and enhance ammonia oxidation and nitrate reduction. These results elucidated the ecological patterns exhibited by microbes under different substrate conditions thereby contributing to our understanding of how substrates shape distinct microcosms in CW systems. This study provides valuable insights for guiding the future construction and management of CWs.


Assuntos
Carbono , Nitrogênio , Eliminação de Resíduos Líquidos , Águas Residuárias , Áreas Alagadas , Nitrogênio/metabolismo , Carbono/metabolismo , Eliminação de Resíduos Líquidos/métodos , Bactérias/metabolismo
8.
J Environ Manage ; 358: 120832, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599089

RESUMO

Polyethylene (PE) is the most productive plastic product and includes three major polymers including high-density polyethylene (HDPE), linear low-density polyethylene (LLDPE) and low-density polyethylene (LDPE) variation in the PE depends on the branching of the polymer chain and its crystallinity. Tenebrio obscurus and Tenebrio molitor larvae biodegrade PE. We subsequently tested larval physiology, gut microbiome, oxidative stress, and PE degradation capability and degradation products under high-purity HDPE, LLDPE, and LDPE powders (<300 µm) diets for 21 days at 65 ± 5% humidity and 25 ± 0.5 °C. Our results demonstrated the specific PE consumption rates by T. molitor was 8.04-8.73 mg PE ∙ 100 larvae-1⋅day-1 and by T. obscurus was 7.68-9.31 for LDPE, LLDPE and HDPE, respectively. The larvae digested nearly 40% of the ingested three PE and showed similar survival rates and weight changes but their fat content decreased by 30-50% over 21-day period. All the PE-fed groups exhibited adverse effects, such as increased benzoquinone concentrations, intestinal tissue damage and elevated oxidative stress indicators, compared with bran-fed control. In the current study, the digestive tract or gut microbiome exhibited a high level of adaptability to PE exposure, altering the width of the gut microbial ecological niche and community diversity, revealing notable correlations between Tenebrio species and the physical and chemical properties (PCPs) of PE-MPs, with the gut microbiome and molecular weight change due to biodegradation. An ecotoxicological simulation by T.E.S.T. confirmed that PE degradation products were little ecotoxic to Daphnia magna and Rattus norvegicus providing important novel insights for future investigations into the environmentally-friendly approach of insect-mediated biodegradation of persistent plastics.


Assuntos
Biodegradação Ambiental , Larva , Microplásticos , Polietileno , Tenebrio , Animais , Tenebrio/metabolismo , Polietileno/metabolismo , Microplásticos/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Estresse Oxidativo
9.
Sci Total Environ ; 931: 172466, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38626826

RESUMO

The burgeoning issue of plasmid-mediated resistance genes (ARGs) dissemination poses a significant threat to environmental integrity. However, the prediction of ARGs prevalence is overlooked, especially for emerging ARGs that are potentially evolving gene exchange hotspot. Here, we explored to classify plasmid or chromosome sequences and detect resistance gene prevalence by using DNABERT. Initially, the DNABERT fine-tuned in plasmid and chromosome sequences followed by multilayer perceptron (MLP) classifier could achieve 0.764 AUC (Area under curve) on external datasets across 23 genera, outperforming 0.02 AUC than traditional statistic-based model. Furthermore, Escherichia, Pseudomonas single genera based model were also be trained to explore its predict performance to ARGs prevalence detection. By integrating K-mer frequency attributes, our model could boost the performance to predict the prevalence of ARGs in an external dataset in Escherichia with 0.0281-0.0615 AUC and Pseudomonas with 0.0196-0.0928 AUC. Finally, we established a random forest model aimed at forecasting the relative conjugation transfer rate of plasmids with 0.7956 AUC, drawing on data from existing literature. It identifies the plasmid's repression status, cellular density, and temperature as the most important factors influencing transfer frequency. With these two models combined, they provide useful reference for quick and low-cost integrated evaluation of resistance gene transfer, accelerating the process of computer-assisted quantitative risk assessment of ARGs transfer in environmental field.


Assuntos
Transferência Genética Horizontal , Plasmídeos , Plasmídeos/genética , Conjugação Genética , Farmacorresistência Bacteriana/genética , Pseudomonas/genética
10.
Sci Total Environ ; 929: 172651, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38653406

RESUMO

The widespread use of microplastics (MPs) has led to an increase in their discharge to wastewater treatment plants. However, the knowledge of impact of MPs on macro-performance and micro-ecology in simultaneous nitrification, denitrification, and phosphorus removal (SNDPR) systems is limited, hampering the understanding of potential risks posed by MPs. This study firstly comprehensively investigated the performance, species interactions, and community assembly under polystyrene (PS) and polyvinyl chloride (PVC) exposure in SNDPR systems. The results showed under PS (1, 10 mg/L) and PVC (1, 10 mg/L) exposure, total nitrogen removal was reduced by 3.38-10.15 %. PS and PVC restrained the specific rates of nitrite and nitrate reduction (SNIRR, SNRR), as well as the activities of nitrite and nitrate reductase enzymes (NIR, NR). The specific ammonia oxidation rate (SAOR) and activity of ammonia oxidase enzyme (AMO) were reduced only at 10 mg/L PVC. PS and PVC enhanced the size of co-occurrence networks, niche breadth, and number of key species while decreasing microbial cooperation by 5.85-13.48 %. Heterogeneous selection dominated microbial community assembly, and PS and PVC strengthened the contribution of stochastic processes. PICRUSt prediction further revealed some important pathways were blocked by PS and PVC. Together, the reduced TN removal under PS and PVC exposure can be attributed to the inhibition of SAOR, SNRR, and SNIRR, the restrained activities of NIR, NR, and AMO, the changes in species interactions and community assembly mechanisms, and the suppression of some essential metabolic pathways. This paper offers a new perspective on comprehending the effects of MPs on SNDPR systems.


Assuntos
Desnitrificação , Microplásticos , Nitrificação , Fósforo , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água , Fósforo/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias , Microbiota
11.
Environ Sci Ecotechnol ; 20: 100412, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38560759

RESUMO

Effective management of large basins necessitates pinpointing the spatial and temporal drivers of primary index exceedances and urban risk factors, offering crucial insights for basin administrators. Yet, comprehensive examinations of multiple pollutants within the Yangtze River Basin remain scarce. Here we introduce a pollution inventory for urban clusters surrounding the Yangtze River Basin, analyzing water quality data from 102 cities during 2018-2019. We assessed the exceedance rates for six pivotal indicators: dissolved oxygen (DO), ammonia nitrogen (NH3-N), chemical oxygen demand (COD), biochemical oxygen demand (BOD), total phosphorus (TP), and the permanganate index (CODMn) for each city. Employing random forest regression and SHapley Additive exPlanations (SHAP) analyses, we identified the spatiotemporal factors influencing these key indicators. Our results highlight agricultural activities as the primary contributors to the exceedance of all six indicators, thus pinpointing them as the leading pollution source in the basin. Additionally, forest coverage, livestock farming, chemical and pharmaceutical sectors, along with meteorological elements like precipitation and temperature, significantly impacted various indicators' exceedances. Furthermore, we delineate five core urban risk components through principal component analysis, which are (1) anthropogenic and industrial activities, (2) agricultural practices and forest extent, (3) climatic variables, (4) livestock rearing, and (5) principal polluting sectors. The cities were subsequently evaluated and categorized based on these risk components, incorporating policy interventions and administrative performance within each region. The comprehensive analysis advocates for a customized strategy in addressing the discerned risk factors, especially for cities presenting elevated risk levels.

12.
Environ Res ; 252(Pt 1): 118810, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38552829

RESUMO

Nitrate/nitrite-dependent anaerobic methane oxidation (n-DAMO) process offers a promising solution for simultaneously achieving methane emissions reduction and efficient nitrogen removal in wastewater treatment. Although nitrogen removal at a practical rate has been achieved by n-DAMO biofilm process, the mechanisms of biofilm formation and nitrogen transformation remain to be elucidated. In this study, n-DAMO biofilms were successfully developed in the membrane aerated moving bed biofilm reactor (MAMBBR) and removed nitrate at a rate of 159 mg NO3--N L-1 d-1. The obvious increase in the content of extracellular polymeric substances (EPS) indicated that EPS production was important for biofilm development. n-DAMO microorganisms dominated the microbial community, and n-DAMO bacteria were the most abundant microorganisms. However, the expression of biosynthesis genes for proteins and polysaccharides encoded by n-DAMO archaea was significantly more active compared to other microorganisms, suggesting the central role of n-DAMO archaea in EPS production and biofilm formation. In addition to nitrate reduction, n-DAMO archaea were revealed to actively express dissimilatory nitrate reduction to ammonium and nitrogen fixation. The produced ammonium was putatively converted to dinitrogen gas through the joint function of n-DAMO archaea and n-DAMO bacteria. This study revealed the biofilm formation mechanism and nitrogen-transformation network in n-DAMO biofilm systems, shedding new light on promoting the application of n-DAMO process.

13.
Bioresour Technol ; 399: 130643, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552855

RESUMO

This study proposed an efficient framework for optimizing the design and operation of combined systems of wastewater treatment plants (WWTP) and constructed wetlands (CW). The framework coupled a WWTP model with a CW model and used a multi-objective evolutionary algorithm to identify trade-offs between energy consumption, effluent quality, and construction cost. Compared to traditional design and management approaches, the framework achieved a 27 % reduction in WWTP energy consumption or a 44 % reduction in CW cost while meeting strict effluent discharge limits for Chinese WWTP. The framework also identified feasible decision variable ranges and demonstrated the impact of different optimization strategies on system performance. Furthermore, the contributions of WWTP and CW in pollutant degradation were analyzed. Overall, the proposed framework offers a highly efficient and cost-effective solution for optimizing the design and operation of a combined WWTP and CW system.


Assuntos
Eliminação de Resíduos Líquidos , Purificação da Água , Áreas Alagadas , Águas Residuárias , Aprendizado de Máquina
14.
Bioresour Technol ; 396: 130383, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38316227

RESUMO

The addition of biochar resulted in a 31.5 % to 44.6 % increase in decolorization efficiency and favorable decolorization stability. Biochar promoted extracellular polymeric substances (EPS) secretion, especially humic-like and fulvic-like substances. Additionally, biochar enhanced the electron transfer capacity of anaerobic sludge and facilitated surface attachment of microbial cells. 16S rRNA gene sequencing analysis indicated that biochar reduced microbial species diversity, enriching fermentative bacteria such as Trichococcus. Finally, a machine learning model was employed to establish a predictive model for biochar characteristics and decolorization efficiency. Biochar electrical conductivity, H/C ratio, and O/C ratio had the most significant impact on RR2 anaerobic decolorization efficiency. According to the results, the possible mechanism of RR2 anaerobic decolorization enhanced by different types of biochar was proposed.


Assuntos
Compostos Azo , Carvão Vegetal , Corantes , Compostos Azo/metabolismo , Corantes/metabolismo , Anaerobiose , RNA Ribossômico 16S/genética , Esgotos
15.
J Hazard Mater ; 465: 133446, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38219578

RESUMO

Polyethylene terephthalate (PET or polyester) is a commonly used plastic and also contributes to the majority of plastic wastes. Mealworms (Tenebrio molitor larvae) are capable of biodegrading major plastic polymers but their degrading ability for PET has not been characterized based on polymer chain size molecular size, gut microbiome, metabolome and transcriptome. We verified biodegradation of commercial PET by T. molitor larvae in a previous report. Here, we reported that biodegradation of commercial PET (Mw 29.43 kDa) was further confirmed by using the δ13C signature as an indication of bioreaction, which was increased from - 27.50‰ to - 26.05‰. Under antibiotic suppression of gut microbes, the PET was still depolymerized, indicating that the host digestive enzymes could degrade PET independently. Biodegradation of high purity PET with low, medium, and high molecular weights (MW), i.e., Mw values of 1.10, 27.10, and 63.50 kDa with crystallinity 53.66%, 33.43%, and 4.25%, respectively, showed a mass reduction of > 95%, 86%, and 74% via broad depolymerization. Microbiome analyses indicated that PET diets shifted gut microbiota to three distinct structures, depending on the low, medium, and high MW. Metagenome sequencing, transcriptomic, and metabolic analyses indicated symbiotic biodegradation of PET by the host and gut microbiota. After PET was fed, the host's genes encoding degradation enzymes were upregulated, including genes encoding oxidizing, hydrolyzing, and non-specific CYP450 enzymes. Gut bacterial genes for biodegrading intermediates and nitrogen fixation also upregulated. The multiple-functional metabolic pathways for PET biodegradation ensured rapid biodegradation resulting in a half-life of PET less than 4 h with less negative impact by PET MW and crystallinity.


Assuntos
Tenebrio , Animais , Tenebrio/metabolismo , Tenebrio/microbiologia , Poliestirenos/metabolismo , Polietilenotereftalatos/metabolismo , Polímeros , Larva/metabolismo , Polietileno/metabolismo , Plásticos/metabolismo , Biodegradação Ambiental , Metaboloma
16.
Water Res ; 251: 121120, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38237459

RESUMO

Waste activated sludge (WAS) as one of the major pollutants with a significant annual production, has garnered significant attention regarding its treatment and utilization. If improperly discharged, it not only caused environmental pollution but also led to the wastage of valuable resources. In this study, the microalgae growth and lipid accumulation using waste activated sludge extracts (WASE) under different temperature conditions were investigated. The highest lipid content (59.13%) and lipid productivity (80.41 mg L-1 d-1) were obtained at cultivation temperatures of 10 and 25 °C, respectively. It was found that microalgae can effectively utilize TN/TP/NH4+-N and other nutrients of WASE. The highest utilization rates of TP, TN and NH4+-N were achieved at a cultivation temperature of 10 °C, reaching 84.97, 77.49 and 92.32%, respectively. The algal fatty acids had carbon chains predominantly ranging from C14 to C18, making them suitable for biodiesel production. Additionally, a comprehensive analysis of transcriptomics and metabolomics revealed up-regulation of genes associated with triglyceride assembly, the antioxidant system of algal cells, and cellular autophagy, as well as the accumulation of metabolites related to the tricarboxylic acid (TCA) cycle and lipids. This study offers novel insights into the microscopic mechanisms of microalgae culture using WASE and approaches for the resource utilization of sludge.


Assuntos
Microalgas , Esgotos , Lipídeos , Biocombustíveis , Temperatura , Perfilação da Expressão Gênica , Biomassa
17.
Water Res ; 251: 121134, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38244297

RESUMO

A coupling technology for lipid production and adsorption of rare earth elements (REEs) using microalgae was studied in this work. The microalgae cell growth, lipid production, biochemical parameters and lipid profiles were investigated under different REEs (Ce3+, Gd3+and La3+). The results showed that the maximum lipid production was achieved at different concentrations of REEs, with lipid productivities of 300.44, 386.84 and 292.19 mg L-1 d-1 under treatment conditions of 100 µg L-1 Ce3+, 250 µg L-1 Gd3+ and 1 mg L-1 La3+, respectively. Moreover, the adsorption efficiency of Ce3+, Gd3+ and La3+exceeded 96.58 %, 93.06 % and 91.3 % at concentrations of 25-1000 µg L-1, 100-500 µg L-1 and 0.25-1 mg L-1, respectively. In addition, algal cells were able to adsorb 66.2 % of 100 µg L-1 Ce3+, 48.4 % of 250 µg L-1 Gd3+ and 59.9 % of 1 mg L-1 La3+. The combination of extracellular polysaccharide and algal cell wall could adsorb 25.2 % of 100 µg L-1 Ce3+, 44.5 % of 250 µg L-1 Gd3+ and 30.5 % of 1 mg L-1 La3+, respectively. These findings indicated that microalgae predominantly adsorbed REEs through the intracellular pathway. This study elucidates the mechanism of effective lipid accumulation and adsorption of REEs by microalgae under REEs stress conditions. It establishes a theoretical foundation for the efficient microalgae lipid production and REEs recovery from wastewater or waste residues containing REEs.


Assuntos
Metais Terras Raras , Microalgas , Biocombustíveis , Adsorção , Lipídeos
18.
Water Res ; 249: 120915, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38029487

RESUMO

Utilizing H2-assisted ex-situ biogas upgrading and acetate recovery holds great promise for achieving high value utilization of biogas. However, it faces a significant challenge due to acetate's high solubility and limited economic value. To address this challenge, we propose an innovative strategy for simultaneous upgrading of biogas and the production of medium-chain fatty acids (MCFAs). A series of batch tests evaluated the strategy's efficiency under varying initial gas ratios (v/v) of H2, CH4, CO2, along with varying ethanol concentrations. The results identified the optimal conditions as initial gas ratios of 3H2:3CH4:2CO2 and an ethanol concentration of 241.2 mmol L-1, leading to maximum CH4 purity (97.2 %), MCFAs yield (54.2 ± 2.1 mmol L-1), and MCFAs carbon-flow distribution (62.3 %). Additionally, an analysis of the microbial community's response to varying conditions highlighted the crucial roles played by microorganisms such as Clostridium, Proteiniphilum, Sporanaerobacter, and Bacteroides in synergistically assimilating H2 and CO2 for MCFAs production. Furthermore, a 160-day continuous operation using a dual-membrane aerated biofilm reactor (dMBfR) was conducted. Remarkable achievements were made at a hydraulic retention time of 2 days, including an upgraded CH4 content of 96.4 ± 0.3 %, ethanol utilization ratio (URethanol) of 95.7 %, MCFAs production rate of 28.8 ± 0.3 mmol L-1 d-1, and MCFAs carbon-flow distribution of 70 ± 0.8 %. This enhancement is proved to be an efficient in biogas upgrading and MCFAs production. These results lay the foundation for maximizing the value of biogas, reducing CO2 emissions, and providing valuable insights into resource recovery.


Assuntos
Biocombustíveis , Reatores Biológicos , Dióxido de Carbono , Metano , Biofilmes , Acetatos , Carbono , Etanol , Ácidos Graxos
19.
Bioresour Technol ; 394: 130236, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38142912

RESUMO

The conversion of carbon dioxide (CO2) from biogas into medium-chain fatty acids (MCFAs) represents an eco-friendly resource recovery approach to reduce dependence on fossil fuels and combat global climate change. This study presented the novel concept of integrated resource recovery by coupling biogas upgrading and MCFAs production for the first time. Initially, the impact of different initial ethanol concentrations on chain elongation was examined, determining that an ethanol concentration of 160 mmol/L maximized MCFAs yield at 45.7 mmol/L. Subsequently, using this optimal ethanol supply, the integrated strategy was implemented by connecting two bioreactors in series and maintaining continuous operation for 160-day. The results were noteworthy: upgraded bio-methane purity reached 97.6 %, MCFAs production rate and carbon-flow distribution reached 24.5 mmol/L d-1 and 76.1 %, respectively. In summary, these promising outcomes pioneer a resource recovery approach, enabling the high-value utilization of biogas and the conversion of CO2 into valuable bio-chemicals.


Assuntos
Biocombustíveis , Dióxido de Carbono , Reatores Biológicos , Ácidos Graxos , Metano , Etanol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA