Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(28): e202404186, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38691059

RESUMO

The introduction of nitrogen-containing functional groups to chiral polymer backbones enables the tailoring of physical properties and offers opportunities for further post-polymerization modification. However, the substrate scope of such polymers is extremely limited because monomers having nitrogen-containing groups can change coordination state with respect to the metal centers, thus decreasing the activity and enantioselectivity and even poisoning the catalyst completely. In this paper, we report our attempts to carry out the asymmetric copolymerization of meso-epoxide with highly reactive isocyanates. In particular, we found that biphenol-linked bimetallic Co(III) complexes with multiple chiral centers are very efficient in catalyzing this asymmetric copolymerization reaction, affording optically active polyurethanes with a completely alternating nature and a high enantioselectivity of up to 94 % ee. Crucially, we identified that the steric hindrance at the phenolate ortho position of the ligand strongly influences the catalytic activity and product enantioselectivity. In addition, density functional theory calculations revealed that the highly sterically bulky substituents change the mechanism from bimetallic to monometallic, and result in the unexpected inversion of the chiral induction direction. Moreover, the high stereoregularity of the produced polyurethanes enhances their thermal stability, and they can be selectively decomposed into oxazolidinones. This study offers a versatile methodology for the synthesis of chiral polymers containing nitrogen functionalities.

2.
Chem Commun (Camb) ; 60(44): 5735-5738, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38742637

RESUMO

Electroreductive ring-opening carboxylation of styrene carbonates with CO2 to achieve dicarboxylic acids and/or ß-hydroxy acids has been developed via the selective cleavage of the C(sp3)-O bond in cyclic carbonates. The product selectivity is probably determined by the stability and reactivity of the key benzylic radical and carbanion intermediate.

3.
Nat Commun ; 15(1): 3002, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589410

RESUMO

The development of closed-loop recycling polymers that exhibit excellent performance is of great significance. Sulfur-rich polymers possessing excellent optical, thermal, and mechanical properties are promising candidates for chemical recycling but lack efficient synthetic strategies for achieving diverse structures. Herein, we report a universal synthetic strategy for producing polytrithiocarbonates, a class of sulfur-rich polymers, via the polycondensation of dithiols and dimethyl trithiocarbonate. This strategy has excellent compatibility with a wide range of monomers, including aliphatic, heteroatomic, and aromatic dithiols enabling the synthesis of polytrithiocarbonates with diverse structures. The present synthesis strategy offers a versatile platform for the construction of thermoplastics, elastomers, and vitrimers. Notably, these polytrithiocarbonates can be easily depolymerized via solvolysis into the corresponding monomers, which can be repolymerized to virgin polymers without changing the material properties.

4.
Chem Commun (Camb) ; 60(38): 5034-5037, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38630292

RESUMO

Herein, we describe an effective strategy for synthesizing polythioethers with a well-defined structure through the cationic polymerization of thiirane with electron-withdrawing substituents. This strategy allows for precisely controlling the regio- and stereochemistry of the ring-opening polymerization of 2-phenylthiirane, thus allowing for producing poly(2-phenylthiirane) with high stereoregularity using enantiomeric pure thiirane.

5.
Angew Chem Int Ed Engl ; 63(18): e202401926, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38415944

RESUMO

Block copolymers, comprising polyether and polyolefin segments, are an important and promising category of functional materials. However, the lack of efficient strategies for the construction of polyether-b-polyolefin block copolymers have hindered the development of these materials. Herein, we propose a simple and efficient method to obtain various block copolymers through the copolymerization of epoxides and acrylates via bimetallic synergistic catalysis. The copolymerization of epoxides and acrylates proceeds in a sequence-controlled manner, where the epoxides-involved homo- or copolymerization occurs first, followed by the homopolymerization of acrylates initiated by the alkoxide species from the propagating polymer chain, thus yielding copolymers with a block structure. Notably, the high monomer compatibility of this powerful strategy provides a platform for synthesizing various polyacrylate-based block copolymers comprising polyether, polycarbonate, polythiocarbonate, polyester, and polyurethane segments, respectively.

6.
Org Lett ; 26(2): 542-546, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38189289

RESUMO

Electrocarboxylation of the C(sp3)-O bond in 1,3-oxazolidin-2-ones with CO2 to achieve ß-amino acids is developed. The C-O bond in substrates can be selectively cleaved via the single electron transfer on the surface of a cathode or through a CO2• - intermediate under additive-free conditions. A great diversity of ß-amino acids can be obtained in a moderate to excellent yield and readily converted to various biologically active compounds.

7.
Chem Rev ; 123(24): 14038-14083, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-37917384

RESUMO

Incorporating sulfur (S) atoms into polymer main chains endows these materials with many attractive features, including a high refractive index, mechanical properties, electrochemical properties, and adhesive ability to heavy metal ions. The copolymerization involving S-containing monomers constitutes a facile method for effectively constructing S-containing polymers with diverse structures, readily tunable sequences, and topological structures. In this review, we describe the recent advances in the synthesis of S-containing polymers via copolymerization or multicomponent polymerization techniques concerning a variety of S-containing monomers, such as dithiols, carbon disulfide, carbonyl sulfide, cyclic thioanhydrides, episulfides and elemental sulfur (S8). Particularly, significant focus is paid to precise control of the main-chain sequence, stereochemistry, and topological structure for achieving high-value applications.

8.
Chemistry ; 29(32): e202204073, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-36912894

RESUMO

Electrocarboxylation reaction, which employs organic electrosynthesis to achieve the utilization of CO2 as a carboxylative reagent, provides a powerful and efficient tool for the preparation of organic carboxylic acid. In some electrocarboxylation reactions, CO2 also acts as a promoter to facilitate the desired reaction. This concept mainly highlights recent CO2 -promoted electrocarboxylation reactions via CO2 ⋅- intermediate or transiently protective carboxylation of active intermediate with CO2 .


Assuntos
Dióxido de Carbono , Ácidos Carboxílicos , Indicadores e Reagentes
9.
Chem Commun (Camb) ; 59(20): 2982-2985, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36807693

RESUMO

This communication reports the synthesis of cyclic polyamines via the cationic ring-opening polymerization (CROP) of N-benzylaziridines initiated by tris(pentafluorophenyl)borane. The debenzylation of these polyamines afforded water-soluble polyethylenimine derivatives. The electrospray ionization mass spectrometry and density functional theory results revealed that the CROP proceeded via the activated chain end intermediates.

10.
Angew Chem Int Ed Engl ; 61(38): e202207660, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-35862121

RESUMO

Highly selective and direct electroreductive ring-opening carboxylation of epoxides with CO2 in an undivided cell is reported. This reaction shows broad substrate scopes within styrene oxides under mild conditions, providing practical and scalable access to important synthetic intermediate ß-hydroxy acids. Mechanistic studies show that CO2 functions not only as a carboxylative reagent in this reaction but also as a promoter to enable efficient and chemoselective transformation of epoxides under additive-free electrochemical conditions. Cathodically generated α-radical and α-carbanion intermediates lead to the regioselective formation of α-carboxylation products.


Assuntos
Dióxido de Carbono , Hidroxiácidos , Compostos de Epóxi , Estirenos
11.
Chem Sci ; 13(21): 6283-6290, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35733884

RESUMO

It is highly desirable to reduce the environmental pollution related to the disposal of end-of-life plastics. Polycarbonates derived from the copolymerization of CO2 and epoxides have attracted much attention since they can enable CO2-fixation and furnish biorenewable and degradable polymeric materials. So far, only linear CO2-based polycarbonates have been reported and typically degraded to cyclic carbonates. Here we synthesize a homogeneous dinuclear methyl zinc catalyst ((BDI-ZnMe)2, 1) to rapidly copolymerize meso-CHO and CO2 into poly(cyclohexene carbonate) (PCHC) with an unprecedentedly cyclic structure. Moreover, in the presence of trace amounts of water, a heterogeneous multi-nuclear zinc catalyst ((BDI-(ZnMe2·xH2O)) n , 2) is prepared and shows up to 99% selectivity towards the degradation of PCHC back to meso-CHO and CO2. This strategy not only achieves the first case of cyclic CO2-based polycarbonate but also realizes the complete chemical recycling of PCHC back to its monomers, representing closed-loop recycling of CO2-based polycarbonates.

12.
Org Lett ; 24(19): 3565-3569, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35532347

RESUMO

Direct electrocarboxylation of various N-acylimines with atmospheric CO2 is achieved in an undivided cell under mild conditions, affording substituted α-amino acids in yields of 62-95%. This reaction is conducted with high efficiency using triethanolamine as an external reductant under nonsacrificial anode conditions, and can be facilely performed on gram scale. Preliminary mechanistic studies including cyclic voltammetry and control experiments support N-radical carbanion as the key intermediate.


Assuntos
Aminoácidos , Dióxido de Carbono , Dióxido de Carbono/química
13.
Angew Chem Int Ed Engl ; 61(16): e202115950, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35129257

RESUMO

The usage of elemental sulfur (S8 ) for constructing sulfur-containing polymers is of great significance in terms of sulfur resource utilization or fabrication of high-performance polymers. Currently, the random disassembly of S8 hinders its direct use in the precise synthesis of sulfur-containing polymers. Herein, we provide an effective strategy for controlling the dismantlement of S8 to synthesize polydisulfides, a promising category of dynamic bonds containing polymers. In this strategy, the completely alternating copolymerization of one sulfur atom, which is orderly derived from S8 , with episulfides is achieved with MTBD (7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene) as catalyst and [PPN]SbF6 ([PPN]+ is bis(triphenylphosphine)iminium) as cocatalyst. Delightedly, the living- polymerization feature, and the good monomer compatibility allows for the access to diverse polydisulfides. Furthermore, the density functional theory (DFT) was employed to elaborate the copolymerization process.

14.
Org Biomol Chem ; 20(3): 678-685, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34939627

RESUMO

Herein, we present the first organocatalytic oxygen/sulfur atom exchange reaction (O/S ER) of isatins by employing carbonyl sulfide (COS) as a novel sulfuring reagent under mild reaction conditions. 8-Diazabicyclo[5.4.0]undec-7-ene (DBU) exhibited excellent activity in this approach. Remarkably, the chemical transformations of in situ generated 3-thioisatins can be tuned via the judicious choice of reaction solvents in a one pot process, enabling the selective formation of either functionalized isoindigos in CH3CN via a self-condensation process or spirothiopyrans in DMSO in the presence of conjugated dienes via the thio-Diels-Alder reaction. Mechanistic studies with experimental and density functional theory approaches revealed that the O/S ER between isatins and COS results in the formation of 3-thioisatins as the key intermediates, which further undergo solvent-controlled transformations to generate isoindigos or spirothiopyrans, respectively. The easily-accessible substrates and operational simplicity make the process suitable for further exploration. The practicality of this transformation was demonstrated by the gram-scale synthesis of isoindigo-based drug molecules and donor-acceptor conjugated polymers.

15.
Angew Chem Int Ed Engl ; 60(33): 17898-17903, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34129266

RESUMO

We report the synthesis of isotactic azobenzene-based polyesters (azopolyesters) with main-chain chirality via highly enantioselective resolution copolymerization of racemic azobenzene-containing epoxides with cyclic anhydrides. All polyesters with trans-azobenzene moieties were found to be semicrystalline materials with melting temperatures of 153-231 °C, while the corresponding isotactic cis-azopolyesters were amorphous. The azobenzene groups in the copolymers exhibited reversible trans-to-cis and cis-to-trans photoisomerization upon irradiation with light. This demonstrates that the crystallinity of isotactic azopolyesters can be manipulated via photoinduced reversible isomerization. In addition, mixing isotactic trans-polyesters with different enantiomeric configurations in a 1:1 mass ratio afforded crystalline stereocomplexes for which the crystalline behavior differed significantly from those of the component enantiomer. Also, photoinduced reversible transitions between semicrystalline and amorphous states were observed in various stereocomplexes of isotactic trans-azopolyesters, similar to the isotactic azopolyesters themselves.

16.
Angew Chem Int Ed Engl ; 60(8): 4315-4321, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33180984

RESUMO

Polymeric materials possessing both high refractive indices and high Abbe numbers are much in demand for the development of advanced optical devices. However, the synthesis of such functional materials is a challenge because of the trade-off between these two properties. Herein, a synthetic strategy is presented for enhancing the optical properties of CO2 -based polycarbonates by modifying the polymer's topological structure. Terpolymers with thiocarbonate and carbonate units randomly distributed in the polymers' main chain were synthesized via the terpolymerization of cyclohexene oxide with a mixture of CO2 and COS in the presence of metal catalysts, most notably a dinuclear aluminum complex. DFT calculations were employed to explain why different structural sequence were obtained with distinct bimetallic catalysts. Varying the CO2 pressure made it possible to obtain terpolymers with tunable carbonate linkages in the polymer chain. More importantly, optical property studies revealed that terpolymers with comparable thiocarbonate and carbonate units exhibited a refractive index of 1.501 with an enhanced Abbe number as high as 48.6, much higher than the corresponding polycarbonates or polythiocarbonates. Additionally, all terpolymers containing varying thiocarbonate content displayed good thermal properties with Tg >109 °C and Td >260 °C, suggesting little loss in the thermal stability compared to the polycarbonate. Hence, modification of the topological structure of the polycarbonate is an efficient method of obtaining polymeric materials with enhanced optical properties without compromising thermal performance.

17.
Eur J Mass Spectrom (Chichester) ; 26(5): 332-340, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32741213

RESUMO

Metal complexes have extensive applications in catalysis, however, the efficient evaluation of Lewis acidity of metal complexes is still a challenge. Herein, we report a method by using electrospray ionization mass spectrometry (ESI-MS) to evaluate the Lewis acidity of metal complexes in the presence of a reference Lewis base, in which the value of the Lewis acidity can be quantized by the bond dissociation energy (BDE) of the resultant Lewis acid-base pairs. Using this method, the Lewis acidity of tetradentate Schiff-base metal complexes (designated as salenMX), a class of common metal complexes in the homogeneous catalysis, was studied in detail. For the salenM(III)X complexes (M = Al, Cr, Fe, Co), the Lewis acidity tendency is Al > Cr > Fe > Co due to a strong affinity between the Al complex and the reference Lewis base while a weak affinity concerning on the Co complex. Additionally, the effect of ligand steric and electronic nature on the Lewis acidity was studied by using Co complex. Furthermore, density functional theory (DFT) was employed to calculate the BDE, which consists with the results obtained from ESI-MS. The ESI-MS method provides a convenient and efficient method for evaluating the Lewis acidity of metal complexes.

18.
J Org Chem ; 85(17): 11579-11588, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32786631

RESUMO

Cyclic anhydrides are versatile synthons and functional comonomers. Herein, we reported an organic base-promoted carboxylative cyclization of 2-butenoates with carbon dioxide to produce important glutaconic anhydrides in good yields. This metal-free reaction showed broad substrate scopes and proceeded under mild reaction conditions.

19.
Proc Natl Acad Sci U S A ; 117(27): 15429-15436, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32581124

RESUMO

The preparation of stereochemistry- and sequence-defined polymers, in which different monomer units are arranged in an ordered fashion just like biopolymers, is of great interest and has been a long-standing goal for chemists due to the expectation of unique macroscopic properties. Here, we describe the enantioselective terpolymerization of racemic terminal epoxides, meso-epoxides, and anhydrides mediated by the privileged chiral dinuclear Al(III) catalyst system, to afford optically active polyester terpolymers with either gradient or random distribution as determined by the epoxides employed during their preparation. The enantioselective terpolymerization of racemic tert-butyl glycidyl ether (rac-TBGE) and cyclopentene oxide with phthalic anhydride (PA) or naphthyl anhydride (NA) gives novel gradient polyesters, in which the crystallization behavior varies continuously along the main chain, due to the decrement of one ester component and the increment of the other occurring sequentially from one chain end to the other. In contrast, the enantioselective terpolymerization of rac-TBGE and meso-epoxide (cyclohexene oxide, 3,4-epoxytetrahydrofuran, or 1,4-dihydronaphthalene oxide) with an anhydride (PA or NA) provided chiral statistical terpolyesters with the random distribution of two kinds of ester units, resulting in a material possessing a mixed glass transition temperature. The present study therefore provides a convenient route to chiral polyesters bearing a range of physical and degradability properties.

20.
Angew Chem Int Ed Engl ; 59(32): 13633-13637, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32372553

RESUMO

Topological polymers possess many advantages over linear polymers. However, when it comes to the poly(monothiocarbonate)s, no topological polymers have been reported. Described herein is a facile and efficient approach for synthesizing well-defined branched poly(monothiocarbonate)s in a "grafting through" manner by copolymerizing carbonyl sulfide (COS) with epichlorohydrin (ECH), where the side-chain forms in situ. The lengths of the side-chains are tunable based on reaction temperatures. More importantly, enhancement in thermal properties of the branched copolymer was observed, as the Tg  value increased by 22 °C, compared to the linear analogues. When chiral ECH was utilized, semicrystalline branched poly(monothiocarbonate)s were accessible with a Tm  value of 112 °C, which is 40 °C higher than that of the corresponding linear poly(monothiocarbonate)s. The strategy presented herein for synthesizing branched polymers provides efficient and concise access to topological polymers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA