Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 87(24): e0032121, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34586911

RESUMO

Steroidal 17-carbonyl reduction is crucial to the production of natural bioactive steroid medicines, and boldenone (BD) is one of the important C-17-hydroxylated steroids. Although efforts have been made to produce BD through biotransformation, the challenges of the complex transformation process, high substrate costs, and low catalytic efficiencies have yet to be mastered. Phytosterol (PS) is the most widely accepted substrate for the production of steroid medicines due to its similar foundational structure and ubiquitous sources. 17ß-Hydroxysteroid dehydrogenase (17ßHSD) and its native electron donor play significant roles in the 17ß-carbonyl reduction reaction of steroids. In this study, we bridged 17ßHSD with a cofactor regeneration strategy in Mycobacterium neoaurum to establish a one-step biocatalytic carbonyl reduction strategy for the efficient biosynthesis of BD from PS for the first time. After investigating different intracellular electron transfer strategies, we rationally designed the engineered strain with the coexpression of 17ßhsd and the glucose-6-phosphate dehydrogenase (G6PDH) gene in M. neoaurum. With the establishment of an intracellular cofactor regeneration strategy, the ratio of [NADPH]/[NADP+] was maintained at a relatively high level, the yield of BD increased from 17% (in MNR M3M-ayr1S.c) to 78% (in MNR M3M-ayr1&g6p with glucose supplementation), and the productivity was increased by 6.5-fold. Furthermore, under optimal glucose supplementation conditions, the yield of BD reached 82%, which is the highest yield reported for transformation from PS in one step. This study demonstrated an excellent strategy for the production of many other valuable carbonyl reduction steroidal products from natural inexpensive raw materials. IMPORTANCE Steroid C-17-carbonyl reduction is one of the important transformations for the production of valuable steroidal medicines or intermediates for the further synthesis of steroidal medicines, but it remains a challenge through either chemical or biological synthesis. Phytosterol can be obtained from low-cost residues of waste natural materials, and it is preferred as the economical and applicable substrate for steroid medicine production by Mycobacterium. This study explored a green and efficient one-step biocatalytic carbonyl reduction strategy for the direct conversion of phytosterol to C-17-hydroxylated steroids by bridging 17ß-hydroxysteroid dehydrogenase with a cofactor regeneration strategy in Mycobacterium neoaurum. This work has practical value for the production of many valuable hydroxylated steroids from natural inexpensive raw materials.


Assuntos
17-Hidroxicorticosteroides/metabolismo , 17-Hidroxiesteroide Desidrogenases/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Mycobacteriaceae/enzimologia , Fitosteróis , Biocatálise , Biotransformação , Fitosteróis/metabolismo
2.
Appl Environ Microbiol ; 86(15)2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32414803

RESUMO

Androst-4-ene-3,17-dione (AD) and androst-1,4-diene-3,17-dione (ADD) are valuable steroid pharmaceutical intermediates obtained by soybean phytosterol biotransformation by Mycobacterium Cyclodextrins (CDs) are generally believed to be carriers for phytosterol delivery and can improve the production of AD and ADD due to their effects on steroid solubilization and alteration in cell wall permeability for steroids. To better understand the mechanisms of CD promotion, we performed proteomic quantification of the effects of hydroxypropyl-ß-CD (HP-ß-CD) on phytosterol metabolism in Mycobacterium neoaurum TCCC 11978 C2. Perturbations are observed in steroid catabolism and glucose metabolism by adding HP-ß-CD in a phytosterol bioconversion system. AD and ADD, as metabolic products of phytosterol, are toxic to cells, with inhibited cell growth and biocatalytic activity. Treatment of mycobacteria with HP-ß-CD relieves the inhibitory effect of AD(D) on the electron transfer chain and cell growth. These results demonstrate the positive relationship between HP-ß-CD and phytosterol metabolism and give insight into the complex functions of CDs as mediators of the regulation of sterol metabolism.IMPORTANCE Phytosterols from soybean are low-cost by-products of soybean oil production and, owing to their good bioavailability in mycobacteria, are preferred as the substrates for steroid drug production via biotransformation by Mycobacterium However, the low level of production of steroid hormone drugs due to the low aqueous solubility (below 0.1 mmol/liter) of phytosterols limits the commercial use of sterol-transformed strains. To improve the bioconversion of steroids, cyclodextrins (CDs) are generally used as an effective carrier for the delivery of hydrophobic steroids to the bacterium. CDs improve the biotransformation of steroids due to their effects on steroid solubilization and alterations in cell wall permeability for steroids. However, studies have rarely reported the effects of CDs on cell metabolic pathways related to sterols. In this study, the effects of hydroxypropyl-ß-CD (HP-ß-CD) on the expression of enzymes related to steroid catabolic pathways in Mycobacterium neoaurum were systematically investigated. These findings will improve our understanding of the complex functions of CDs in the regulation of sterol metabolism and guide the application of CDs to sterol production.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/metabolismo , Proteínas de Bactérias/metabolismo , Excipientes/metabolismo , Mycobacteriaceae/metabolismo , Fitosteróis/metabolismo , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA