Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(21): 9261-9271, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38739716

RESUMO

Methane, a greenhouse gas, plays a pivotal role in the global carbon cycle, influencing the Earth's climate. Only a limited number of microorganisms control the flux of biologically produced methane in nature, including methane-oxidizing bacteria, anaerobic methanotrophic archaea, and methanogenic archaea. Although previous studies have revealed the spatial and temporal distribution characteristics of methane-metabolizing microorganisms in local regions by using the marker genes pmoA or mcrA, their biogeographical patterns and environmental drivers remain largely unknown at a global scale. Here, we used 3419 metagenomes generated from georeferenced soil samples to examine the global patterns of methane metabolism marker gene abundances in soil, which generally represent the global distribution of methane-metabolizing microorganisms. The resulting maps revealed notable latitudinal trends in the abundances of methane-metabolizing microorganisms across global soils, with higher abundances in the sub-Arctic, sub-Antarctic, and tropical rainforest regions than in temperate regions. The variations in global abundances of methane-metabolizing microorganisms were primarily governed by vegetation cover. Our high-resolution global maps of methane-metabolizing microorganisms will provide valuable information for the prediction of biogenic methane emissions under current and future climate scenarios.


Assuntos
Metano , Microbiologia do Solo , Solo , Metano/metabolismo , Solo/química , Archaea/genética , Archaea/metabolismo , Bactérias/metabolismo , Bactérias/genética , Metagenoma
2.
Artigo em Inglês | MEDLINE | ID: mdl-36078588

RESUMO

The main purposes of this study were to explore the spatial distribution characteristics of H7N9 human infections during 2013-2017, and to construct a neural network risk simulation model of H7N9 outbreaks in China and evaluate their effects. First, ArcGIS 10.6 was used for spatial autocorrelation analysis, and cluster patterns ofH7N9 outbreaks were analyzed in China during 2013-2017 to detect outbreaks' hotspots. During the study period, the incidence of H7N9 outbreaks in China was high in the eastern and southeastern coastal areas of China, with a tendency to spread to the central region. Moran's I values of global spatial autocorrelation of H7N9 outbreaks in China from 2013 to 2017 were 0.080128, 0.073792, 0.138015, 0.139221 and 0.050739, respectively (p < 0.05) indicating a statistically significant positive correlation of the epidemic. Then, SPSS 20.0 was used to analyze the correlation between H7N9 outbreaks in China and population, livestock production, the distance between the case and rivers, poultry farming, poultry market, vegetation index, etc. Statistically significant influencing factors screened out by correlation analysis were population of the city, average vegetation of the city, and the distance between the case and rivers (p < 0.05), which were included in the neural network risk simulation model of H7N9 outbreaks in China. The simulation accuracy of the neural network risk simulation model of H7N9 outbreaks in China from 2013 to 2017 were 85.71%, 91.25%, 91.54%, 90.49% and 92.74%, and the AUC were 0.903, 0.976, 0.967, 0.963 and 0.970, respectively, showing a good simulation effect of H7N9 epidemics in China. The innovation of this study lies in the epidemiological study of H7N9 outbreaks by using a variety of technical means, and the construction of a neural network risk simulation model of H7N9 outbreaks in China. This study could provide valuable references for the prevention and control of H7N9 outbreaks in China.


Assuntos
Subtipo H7N9 do Vírus da Influenza A , Influenza Aviária , Influenza Humana , Animais , Aves , China/epidemiologia , Surtos de Doenças/prevenção & controle , Humanos , Influenza Aviária/epidemiologia , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Redes Neurais de Computação , Aves Domésticas
3.
Int J Infect Dis ; 105: 675-685, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33711521

RESUMO

OBJECTIVES: The purpose of this study was to explore the temporal and spatial characteristics of COVID-19 transmission and its influencing factors in China, from January to October 2020. METHODS: About 81,000 COVID-19 confirmed case data, Baidu migration index data, air pollutants, meteorological data, and government response strictness index data were collected from 31 provincial-level regions (excluding Hong Kong, Macao, and Taiwan) and 337 prefecture-level cities. The spatio-temporal characteristics of COVID-19 were explored using spatial autocorrelation, hot spot, and spatio-temporal scanning statistics. At the same time, Spearman rank correlation analysis and multiple linear regression were used to explore the relationship between influencing factors and confirmed COVID-19 cases. RESULTS: The distribution of COVID-19 in China tends to be stable over time, with spatial correlation and prominent clustering regions. Spatio-temporal scanning analysis showed that most COVID-19 high-incidence months were from January to March at the beginning of the epidemic, and the area with the highest aggregation risk was Hubei Province (RR=491.57) which was 491.57 times the aggregation risk of other regions. Among the meteorological variables, the daily average temperature, wind speed, precipitation, and new COVID-19 cases were negatively correlated. The air pollution concentration and migration index were positively correlated with new confirmed cases, and the government response strict index was strongly negatively correlated with confirmed COVID-19 cases. CONCLUSIONS: Environmental temperature has a certain inhibitory effect on the transmission of COVID-19; the air pollution concentration and migration index have a certain promoting effect on the transmission of COVID-19. The strict government response index indicates that the greater the intensity of government intervention, the fewer COVID-19 cases will occur.


Assuntos
COVID-19/transmissão , Poluição do Ar , China/epidemiologia , Humanos , Fatores de Risco , SARS-CoV-2 , Análise Espaço-Temporal , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA