RESUMO
Podoplanin and CD44 are transmembrane glycoproteins involved in inflammation and cancer. In this paper, we report that podoplanin is coordinately expressed with the CD44 standard (CD44s) and variant (CD44v) isoforms in vivo-in hyperplastic skin after a pro-inflammatory stimulus with 12-O-tetradecanoylphorbol-13-acetate (TPA)-and in vitro-in cell lines representative of different stages of mouse-skin chemical carcinogenesis, as well as in human squamous carcinoma cell (SCC) lines. Moreover, we identify CD44v10 in the mouse-skin carcinogenesis model as the only CD44 variant isoform expressed in highly aggressive spindle carcinoma cell lines together with CD44s and podoplanin. We also characterized CD44v3-10, CD44v6-10 and CD44v8-10 as the major variant isoforms co-expressed with CD44s and podoplanin in human SCC cell lines. Immunofluorescence confocal microscopy experiments show that these CD44v isoforms colocalize with podoplanin at plasma membrane protrusions and cell-cell contacts of SCC cells, as previously reported for CD44s. Furthermore, CD44v isoforms colocalize with podoplanin in chemically induced mouse-skin SCCs in vivo. Co-immunoprecipitation experiments indicate that podoplanin physically binds to CD44v3-10, CD44v6-10 and CD44v8-10 isoforms, as well as to CD44s. Podoplanin-CD44 interaction is mediated by the transmembrane and cytosolic regions and is negatively modulated by glycosylation of the extracellular domain. These results point to a functional interplay of podoplanin with both CD44v and CD44s isoforms in SCCs and give insight into the regulation of the podoplanin-CD44 association.
Assuntos
Carcinoma de Células Escamosas/metabolismo , Receptores de Hialuronatos/metabolismo , Glicoproteínas de Membrana/metabolismo , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Extensões da Superfície Celular/metabolismo , Humanos , Receptores de Hialuronatos/genética , Glicoproteínas de Membrana/genética , Camundongos , Ésteres de Forbol/farmacologia , Ligação Proteica , Domínios Proteicos/genética , Isoformas de ProteínasRESUMO
The tuatara (Sphenodon punctatus)-the only living member of the reptilian order Rhynchocephalia (Sphenodontia), once widespread across Gondwana1,2-is an iconic species that is endemic to New Zealand2,3. A key link to the now-extinct stem reptiles (from which dinosaurs, modern reptiles, birds and mammals evolved), the tuatara provides key insights into the ancestral amniotes2,4. Here we analyse the genome of the tuatara, which-at approximately 5 Gb-is among the largest of the vertebrate genomes yet assembled. Our analyses of this genome, along with comparisons with other vertebrate genomes, reinforce the uniqueness of the tuatara. Phylogenetic analyses indicate that the tuatara lineage diverged from that of snakes and lizards around 250 million years ago. This lineage also shows moderate rates of molecular evolution, with instances of punctuated evolution. Our genome sequence analysis identifies expansions of proteins, non-protein-coding RNA families and repeat elements, the latter of which show an amalgam of reptilian and mammalian features. The sequencing of the tuatara genome provides a valuable resource for deep comparative analyses of tetrapods, as well as for tuatara biology and conservation. Our study also provides important insights into both the technical challenges and the cultural obligations that are associated with genome sequencing.
Assuntos
Evolução Molecular , Genoma/genética , Filogenia , Répteis/genética , Animais , Conservação dos Recursos Naturais/tendências , Feminino , Genética Populacional , Lagartos/genética , Masculino , Anotação de Sequência Molecular , Nova Zelândia , Caracteres Sexuais , Serpentes/genética , SinteniaRESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
Podoplanin is a small cell-surface mucin-like glycoprotein that plays a crucial role in the development of the alveoli, heart, and lymphatic vascular system. Emerging evidence indicates that it is also involved in the control of mammary stem-cell activity and biogenesis of platelets in the bone marrow, and exerts an important function in the immune response. Podoplanin expression is upregulated in different cell types, including fibroblasts, macrophages, T helper cells, and epithelial cells, during inflammation and cancer, where it plays important roles. Podoplanin is implicated in chronic inflammatory diseases, such as psoriasis, multiple sclerosis, and rheumatoid arthritis, promotes inflammation-driven and cancer-associated thrombosis, and stimulates cancer cell invasion and metastasis through a variety of strategies. To accomplish its biological functions, podoplanin must interact with other proteins located in the same cell or in neighbor cells. The binding of podoplanin to its ligands leads to modulation of signaling pathways that regulate proliferation, contractility, migration, epithelialâ»mesenchymal transition, and remodeling of the extracellular matrix. In this review, we describe the diverse roles of podoplanin in inflammation and cancer, depict the protein ligands of podoplanin identified so far, and discuss the mechanistic basis for the involvement of podoplanin in all these processes.
Assuntos
Inflamação/etiologia , Inflamação/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Neoplasias/etiologia , Neoplasias/metabolismo , Animais , Proteínas de Transporte , Diferenciação Celular/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Suscetibilidade a Doenças , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica , Humanos , Imunomodulação , Linfangiogênese/genética , Glicoproteínas de Membrana/química , Ligação Proteica , Transdução de Sinais , Relação Estrutura-AtividadeRESUMO
The α7 nicotinic receptor subunit and its partially duplicated human-specific dupα7 isoform are coexpressed in neuronal and non-neuronal cells. In these cells, α7 subunits form homopentameric α7 nicotinic acetylcholine receptors (α7-nAChRs) implicated in numerous pathologies. In immune cells, α7-nAChRs are essential for vagal control of inflammatory response in sepsis. Recent studies show that the dupα7 subunit is a dominant-negative regulator of α7-nAChR activity in Xenopus oocytes. However, its biological significance in mammalian cells, particularly immune cells, remains unexplored, as the duplicated form is indistinguishable from the original subunit in standard tests. Here, using immunocytochemistry, confocal microscopy, coimmunoprecipitation, FRET, flow cytometry, and ELISA, we addressed this challenge in GH4C1 rat pituitary cells and RAW264.7 murine macrophages transfected with epitope- and fluorescent protein-tagged α7 or dupα7. We used quantitative RT-PCR of dupα7 gene expression levels in peripheral blood mononuclear cells (PBMCs) from patients with sepsis to analyze its relationship with PBMC α7 mRNA levels and with serum concentrations of inflammatory markers. We found that a physical interaction between dupα7 and α7 subunits in both cell lines generates heteromeric nAChRs that remain mainly trapped in the endoplasmic reticulum. The dupα7 sequestration of α7 subunits reduced membrane expression of functional α7-nAChRs, attenuating their anti-inflammatory capacity in lipopolysaccharide-stimulated macrophages. Moreover, the PBMC's dupα7 levels correlated inversely with their α7 levels and directly with the magnitude of the patients' inflammatory state. These results indicate that dupα7 probably reduces human vagal anti-inflammatory responses and suggest its involvement in other α7-nAChR-mediated pathophysiological processes.
Assuntos
Inflamação/fisiopatologia , Isoformas de Proteínas/metabolismo , Sepse/patologia , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Linhagem Celular , Retículo Endoplasmático/metabolismo , Humanos , Macrófagos , Camundongos , Hipófise/citologia , Isoformas de Proteínas/análise , Isoformas de Proteínas/genética , RNA Mensageiro/análise , Ratos , Sepse/metabolismo , Transfecção , Receptor Nicotínico de Acetilcolina alfa7/análise , Receptor Nicotínico de Acetilcolina alfa7/genéticaRESUMO
Qa-2 is believed to mediate a protective immune response against cancer; however, little is known about the role of Qa-2 in tumorigenesis. Here, we used 4T1 breast cancer cells to study the involvement of Qa-2 in tumor progression in a syngeneic host. Qa-2 expression was reduced during in vivo tumor growth and in cell lines derived from 4T1-induced tumors. Tumor-derived cells elicited an epithelial-mesenchymal transition associated with upregulation of Zeb1 and Twist1/2 and enhanced tumor initiating and invasive capacities. Furthermore, these cells showed increased stem characteristics, as demonstrated by upregulation of Hes1, Sox2 and Oct3/4, and enrichment of CD44high/CD24median/low cells. Remarkably, Qa-2 cell-surface expression was excluded from the CD44high/CD24median/low subpopulation. Tumor-derived cells showed increased Src activity, and treatment of these cells with the Src kinase inhibitor PP2 enhanced Qa-2 but reduced Sox2 and CD44high/CD24median/low expression levels, suggesting that Src signaling, while positively associated with stemness, negatively regulates Qa-2 expression in breast cancer. Finally, overexpression of the Qa-2 family member Q7 on the cell surface slowed down in vivo tumor growth and reduced the metastatic potential of 4T1 cells. These results suggest an anti-malignant role for Qa-2 in breast cancer development, which appears to be absent from cancer stem cells.
Assuntos
Neoplasias da Mama/patologia , Transição Epitelial-Mesenquimal , Antígenos de Histocompatibilidade Classe I/metabolismo , Células-Tronco Neoplásicas/patologia , Animais , Apoptose , Neoplasias da Mama/metabolismo , Carcinogênese , Movimento Celular , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Células-Tronco Neoplásicas/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Podoplanin (PDPN) is a transmembrane glycoprotein that plays crucial roles in embryonic development, the immune response, and malignant progression. Here, we report that cells ectopically or endogenously expressing PDPN release extracellular vesicles (EVs) that contain PDPN mRNA and protein. PDPN incorporates into membrane shed microvesicles (MVs) and endosomal-derived exosomes (EXOs), where it was found to colocalize with the canonical EV marker CD63 by immunoelectron microscopy. We have previously found that expression of PDPN in MDCK cells induces an epithelial-mesenchymal transition (EMT). Proteomic profiling of MDCK-PDPN cells compared to control cells shows that PDPN-induced EMT is associated with upregulation of oncogenic proteins and diminished expression of tumor suppressors. Proteomic analysis of exosomes reveals that MDCK-PDPN EXOs were enriched in protein cargos involved in cell adhesion, cytoskeletal remodeling, signal transduction and, importantly, intracellular trafficking and EV biogenesis. Indeed, expression of PDPN in MDCK cells stimulated both EXO and MV production, while knockdown of endogenous PDPN in human HN5 squamous carcinoma cells reduced EXO production and inhibited tumorigenesis. EXOs released from MDCK-PDPN and control cells both stimulated in vitro angiogenesis, but only EXOs containing PDPN were shown to promote lymphatic vessel formation. This effect was mediated by PDPN on the surface of EXOs, as demonstrated by a neutralizing specific monoclonal antibody. These results contribute to our understanding of PDPN-induced EMT in association to tumor progression, and suggest an important role for PDPN in EV biogenesis and/or release and for PDPN-EXOs in modulating lymphangiogenesis.
Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Linfangiogênese/fisiologia , Glicoproteínas de Membrana/metabolismo , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/metabolismo , Cães , Xenoenxertos , Humanos , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologiaRESUMO
Protein transfer to solid supports after polyacrylamide gel electrophoresis, and subsequent probing with specific antibodies, is one of the most important tools in modern molecular and cellular biology. Since its development in 1979, the improvement of the technique has been impressive, from new apparatus to streamline the electrophoresis step to different modalities of the transfer step or solid supports for the transfer. Perhaps most impressive has been the explosion of the production and availability of antibodies. In this chapter, I describe the environment and conditions that led to the development of this technique in George Stark's laboratory.
Assuntos
Eletroforese em Gel de Poliacrilamida/história , Proteínas/isolamento & purificação , Vírus 40 dos Símios/fisiologia , Animais , Antígenos Virais/análise , Eletroforese em Gel de Poliacrilamida/métodos , História do Século XX , Proteínas/análise , Vírus 40 dos Símios/imunologiaRESUMO
Podoplanin is a small mucin-like transmembrane protein expressed in several adult tissues and with an important role during embryogenesis. It is needed for the proper development of kidneys and lungs as well as accurate formation of the lymphatic vascular system. In addition, it is involved in the physiology of the immune system. A wide variety of tumors express podoplanin, both in the malignant cells and in the stroma. Although there are exceptions, the presence of podoplanin results in poor prognosis. The main consequence of forced podoplanin expression in established and tumor-derived cell lines is an increase in cell migration and, eventually, the triggering of an epithelial-mesenchymal transition, whereby cells acquire a fibroblastoid phenotype and increased motility. We will examine the current status of the role of podoplanin in the induction of epithelial-mesenchymal transition as well as the different interactions that lead to this program.
Assuntos
Movimento Celular , Transição Epitelial-Mesenquimal , Glicoproteínas de Membrana/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Adulto , Animais , HumanosRESUMO
BACKGROUND: Stimulation of the vagus nerve in the so-called cholinergic antiinflammatory pathway (CAP) attenuates systemic inflammation, improving survival in animal sepsis models via α7 nicotinic acetylcholine receptors on immunocompetent cells. Because the relevance of this regulatory pathway is unknown in human sepsis, this pilot study assessed whether the α7 gene expression level in septic patients' peripheral blood mononuclear cells (PBMC) might be used to assess CAP activity and clinical outcome. METHODS: The PBMCs α7 messenger RNA levels were determined by real-time quantitative reverse-transcription polymerase chain reaction in 33 controls and 33 patients at enrollment and after their hospital discharge. Data were analyzed to find significant associations between α7 level, vagally mediated heart rate variability as an indirect reflection of CAP activity, serum concentrations of different inflammation markers, and clinical course. RESULTS: Septic patients' α7 levels were significantly increased and returned to control values after recovery. These α7 levels correlated directly with the vagal heart input and inversely with the magnitude of the patient's inflammatory state, disease severity, and clinical outcome. CONCLUSIONS: This study reveals that the PBMC α7 gene expression level is a clinically relevant marker for CAP activity in sepsis: the higher the α7 expression, the better the inflammation control and the prognosis.
Assuntos
Leucócitos Mononucleares/metabolismo , RNA Mensageiro/sangue , Sepse/genética , Receptor Nicotínico de Acetilcolina alfa7/genética , Adulto , Idoso , Anti-Inflamatórios/uso terapêutico , Biomarcadores/metabolismo , Estudos de Casos e Controles , Linhagem Celular , Colinérgicos/uso terapêutico , Feminino , Expressão Gênica/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Humanos , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/microbiologia , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Estudos Prospectivos , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Sepse/sangue , Sepse/tratamento farmacológico , Sepse/metabolismo , Nervo Vago/fisiologia , Receptor Nicotínico de Acetilcolina alfa7/metabolismoRESUMO
Increased levels of soluble endoglin (Sol-Eng) correlate with poor outcome in human cancer. We have previously shown that shedding of membrane endoglin, and concomitant release of Sol-Eng is a late event in chemical mouse skin carcinogenesis associated with the development of undifferentiated spindle cell carcinomas (SpCCs). In this report, we show that mouse skin SpCCs exhibit a high expression of hepatocyte growth factor (HGF) and an elevated ratio of its active tyrosine kinase receptor Met versus total Met levels. We have evaluated the effect of Sol-Eng in spindle carcinoma cells by transfection of a cDNA encoding most of the endoglin ectodomain or by using purified recombinant Sol-Eng. We found that Sol-Eng inhibited both mitogen-activated protein kinase (MAPK) activity and cell growth in vitro and in vivo. Sol-Eng also blocked MAPK activation by transforming growth factor-ß1 (TGF-ß1) and impaired both basal and HGF-induced activation of Met and downstream MAPK. Moreover, Sol-Eng strongly reduced basal and HGF-stimulated spindle cell migration and invasion. Both Sol-Eng and full-length endoglin were shown to interact with Met by coimmunoprecipitation experiments. However, full-length endoglin expressed at the plasma membrane of spindle carcinoma cells had no effect on Met signaling activity, and was unable to inhibit HGF-induced cell migration/invasion. These results point to a paradoxical suppressor role for Sol-Eng in carcinogenesis.
Assuntos
Antígenos CD/metabolismo , Carcinogênese/metabolismo , Fator de Crescimento de Hepatócito/biossíntese , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Receptores de Superfície Celular/metabolismo , Sarcoma/metabolismo , Neoplasias Cutâneas/metabolismo , 9,10-Dimetil-1,2-benzantraceno/farmacologia , Animais , Antígenos CD/genética , Carcinogênese/patologia , Movimento Celular/genética , Proliferação de Células/genética , DNA Complementar/genética , Endoglina , Ativação Enzimática , Feminino , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Nus , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Prognóstico , Receptores de Superfície Celular/genética , Sarcoma/patologia , Neoplasias Cutâneas/patologia , Acetato de Tetradecanoilforbol/farmacologia , Transfecção , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Células Tumorais CultivadasRESUMO
Nicotine stimulation of α7 nicotinic acetylcholine receptor (α7 nAChR) powerfully inhibits pro-inflammatory cytokine production in lipopolysaccharide (LPS)-stimulated macrophages and in experimental models of endotoxemia. A signaling pathway downstream from the α7 nAChRs, which involves the collaboration of JAK2/STAT3 and NF-κB to interfere with signaling by Toll-like receptors (TLRs), has been implicated in this anti-inflammatory effect of nicotine. Here, we identifiy an alternative mechanism involving interleukin-1 receptor-associated kinase M (IRAK-M), a negative regulator of innate TLR-mediated immune responses. Our data show that nicotine up-regulates IRAK-M expression at the mRNA and protein level in human macrophages, and that this effect is secondary to α7 nAChR activation. By using selective inhibitors of different signaling molecules downstream from the receptor, we provide evidence that activation of STAT3, via either JAK2 and/or PI3K, through a single (JAK2/PI3K/STAT3) or two convergent cascades (JAK2/STAT3 and PI3K/STAT3), is necessary for nicotine-induced IRAK-M expression. Moreover, down-regulation of this expression by small interfering RNAs specific to the IRAK-M gene significantly reverses the anti-inflammatory effect of nicotine on LPS-induced TNF-α production. Interestingly, macrophages pre-exposed to nicotine exhibit higher IRAK-M levels and reduced TNF-α response to an additional LPS challenge, a behavior reminiscent of the 'endotoxin tolerant' phenotype identified in monocytes either pre-exposed to LPS or from immunocompromised septic patients. Since nicotine is a major component of tobacco smoke and increased IRAK-M expression has been considered one of the molecular determinants for the induction of the tolerant phenotype, our findings showing IRAK-M overexpression could partially explain the known influence of smoking on the onset and progression of inflammatory and infectious diseases.
Assuntos
Anti-Inflamatórios/farmacologia , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Macrófagos/metabolismo , Nicotina/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Humanos , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacosRESUMO
Podoplanin (PDPN) is a mucin-like transmembrane glycoprotein that plays an important role in development and cancer. Here, we provide evidence that the intracellular domain (ICD) of podoplanin is released into the cytosol following a sequential proteolytic processing by a metalloprotease and γ-secretase. Western blotting and cell fractionation studies revealed that HEK293T and MDCK cells transfected with an eGFP-tagged podoplanin construct (PDPNeGFP, 50-63kDa) constitutively express two C-terminal fragments (CTFs): a â¼33kDa membrane-bound PCTF33, and a â¼29kDa cytosolic podoplanin ICD (PICD). While pharmacological inhibition of metalloproteases reduced the expression of PCTF33, treatment of cells with γ-secretase inhibitors resulted in enhanced PCTF33 levels. PCTF33 processing by γ-secretase depends on presenilin-1 (PS1) function: cells expressing a dominant negative form of PS1 (PS1 D385N), and mouse embryonic fibroblasts (MEFs) genetically deficient in PS1, but not in PS2, show higher levels of PCTF33 expression with respect to wild-type MEFs. Furthermore, transfection of PS1 deficient MEFs with wild-type PS1 (PS1 wt) decreased PCTF33 levels. N-terminal amino acid sequencing of the affinity purified PICD revealed that the γ-secretase cleavage site was located between valines 150 and 151, but these residues are not critical for proteolysis. We found that podoplanin CTFs are also generated in cells expressing podoplanin mutants harboring heterologous transmembrane regions. Taken together, these results indicate that podoplanin is a novel substrate for PS1/γ-secretase.
Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Glicoproteínas de Membrana/metabolismo , Presenilina-1/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Animais , Cães , Células HEK293 , Humanos , Células Madin Darby de Rim Canino , Camundongos , Camundongos Transgênicos , Presenilina-1/genética , TransfecçãoRESUMO
INTRODUCTION: Cell-free plasma mitochondrial DNA (mt-DNA) and nuclear DNA (n-DNA) are biomarkers with prognostic utility in conditions associated with a high rate of cell death. This exploratory study aimed to determine the plasma levels of both nucleic acids in patients with massive and submassive pulmonary embolism (PE) and to compare them with other biomarkers, such as heart-type fatty acid-binding protein (H-FABP) and troponin I (Tn-I) METHODS: This was a prospective observational study of 37 consecutive patients with massive PE, 37 patients with submassive PE, and 37 healthy subjects. Quantifications of plasma mt-DNA and n-DNA with real-time quantitative polymerase chain reaction (PCR), and plasma H-FABP and Tn-I by commercial assays, were done on blood samples drawn within 4 hours after presentation at the emergency department. RESULTS: Plasma mt-DNA and n-DNA concentrations were much higher in patients with massive PE (median, 2,970 GE/ml; interquartile range (IQR), 1,050 to 5,485; and 3,325 GE/ml, IQR: 1,080 to 5,790, respectively) than in patients with submassive PE (870 GE/ml and 1,245 GE/ml, respectively; P < 0.01) or controls (185 GE/ml and 520 GE/ml, respectively). Eighteen patients with massive PE died of a PE-related cause by day 15 of observation. Plasma mt-DNA and n-DNA values were 2.3-fold and 1.9-fold higher in the subgroup of nonsurviving patients than in survivors. H-FABP and Tn-I values were also higher in patients with massive PE who died (7.3 ng/ml and 0.023 ng/ml, respectively) than in those who survived (6.4 ng/ml, and 0.016 ng/ml, respectively). By receiver operating curve (ROC) analysis, the best cutoff values for predicting 15-day mortality were 3,380 GE/ml for mt-DNA, 6.8 ng/ml for H-FABP, 3,625 GE/ml for n-DNA, and 0.020 ng/ml for Tn-I, based on the calculated areas under the curve (AUCs) of 0.89 (95% confidence interval (CI), 0.78 to 0.99), 0.76 (95% CI, 0.69 to 093), 0.73 (95% CI, 0.58 to 0.91), and 0.59 (95% CI, 0.41 to 0.79), respectively. By stepwise logistic regression, a plasma mt-DNA concentration greater than 3,380 GE/ml (adjusted odds ratio (OR), 8.22; 95% CI, 1.72 to 39.18; P < 0.001) and a plasma value of H-FBAP >6.8 ng/ml (OR, 5.36; 95% CI, 1.06 to 27.08; P < 0.01) were the only independent predictors of mortality. CONCLUSIONS: mt-DNA and H-FBAP might be promising markers for predicting 15-day mortality in massive PE, with mt-DNA having better prognostic accuracy.
Assuntos
DNA Mitocondrial/sangue , DNA/sangue , Embolia Pulmonar/sangue , Idoso , Apoptose , Biomarcadores/sangue , Serviço Hospitalar de Emergência , Proteínas de Ligação a Ácido Graxo/sangue , Feminino , Mortalidade Hospitalar , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Embolia Pulmonar/tratamento farmacológico , Embolia Pulmonar/mortalidade , Fatores de Risco , Terapia Trombolítica , Troponina I/sangue , Receptor fas/sangueRESUMO
INTRODUCTION: Plasma vascular endothelial growth factor (VEGF) was shown to increase during acute hypoglycemia and could mediate rapid adaptation of the brain. In this study we examined the neuroendocrine response in patients with type 2 diabetes mellitus (T2DM) in hypoglycemic coma or with acute neuroglycopenic symptoms. METHODS: We prospectively studied 135 consecutive T2DM patients admitted for severe hypoglycemia during a 2-year period. We collected clinical variables and measured plasma concentrations of VEGF, epinephrine, norepinephrine, cortisol and growth hormone at admission and 30min afterwards. RESULTS: Thirty two patients developed hypoglycemic coma and 103 did not lose consciousness. Median plasma VEGF level of coma patients was 3.1-fold lower at baseline than that of non-coma patients, and even 5.3-fold lower 30min afterwards. Plasma epinephrine concentration was significantly lower just at baseline in coma patients. On the contrary, there were no differences in concentrations of the other hormones. Multivariate logistic regression analysis showed that VEGF concentration (OR 0.68; CI 0.51-0.95) was a protective factor against the development of coma. CONCLUSIONS: VEGF and epinephrine responses to acute hypoglycemia are reduced in T2DM patients who develop hypoglycemic coma. An increased plasma VEGF concentration appeared to be a protective factor against the development of hypoglycemic coma.
Assuntos
Coma/sangue , Coma/complicações , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Hipoglicemia/sangue , Hipoglicemia/complicações , Fator A de Crescimento do Endotélio Vascular/sangue , Idoso , Estudos de Coortes , Feminino , Humanos , Modelos Logísticos , Masculino , Análise MultivariadaRESUMO
Mammalian DNA methyltransferase 1 (DNMT1) is essential for maintaining DNA methylation patterns after cell division. Disruption of DNMT1 catalytic activity results in whole genome cytosine demethylation of CpG dinucleotides, promoting severe dysfunctions in somatic cells and during embryonic development. While these observations indicate that DNMT1-dependent DNA methylation is required for proper cell function, the possibility that DNMT1 has a role independent of its catalytic activity is a matter of controversy. Here, we provide evidence that DNMT1 can support cell functions that do not require the C-terminal catalytic domain. We report that PCNA and DMAP1 domains in the N-terminal region of DNMT1 are sufficient to modulate E-cadherin expression in the absence of noticeable changes in DNA methylation patterns in the gene promoters involved. Changes in E-cadherin expression are directly associated with regulation of ß-catenin-dependent transcription. Present evidence suggests that the DNMT1 acts on E-cadherin expression through its direct interaction with the E-cadherin transcriptional repressor SNAIL1.
Assuntos
Caderinas/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Fatores de Transcrição/metabolismo , Transporte Ativo do Núcleo Celular , Caderinas/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/química , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA , Regulação para Baixo , Humanos , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , Deleção de Sequência , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética , Transcrição Gênica , beta Catenina/metabolismoRESUMO
Podoplanin is a transmembrane glycoprotein that is upregulated in cancer and was reported to induce an epithelial-mesenchymal transition (EMT) in MDCK cells. The promotion of EMT was dependent on podoplanin binding to ERM (ezrin, radixin, moesin) proteins through its cytoplasmic (CT) domain, which led to RhoA-associated kinase (ROCK)-dependent ERM phosphorylation. Using detergent-resistant membrane (DRM) assays, as well as transmembrane (TM) interactions and ganglioside GM1 binding, we present evidence supporting the localization of podoplanin in raft platforms important for cell signalling. Podoplanin mutant constructs harbouring a heterologous TM region or lacking the CT tail were unable to associate with DRMs, stimulate ERM phosphorylation and promote EMT or cell migration. Similar effects were observed upon disruption of a GXXXG motif within the TM domain, which is involved in podoplanin self-assembly. In contrast, deletion of the extracellular (EC) domain did not affect podoplanin DRM association. Together, these data suggest that both the CT and TM domains are required for podoplanin localization in raft platforms, and that this association appears to be necessary for podoplanin-mediated EMT and cell migration.
Assuntos
Transição Epitelial-Mesenquimal , Glicoproteínas de Membrana/metabolismo , Microdomínios da Membrana/metabolismo , Motivos de Aminoácidos/genética , Animais , Linhagem Celular , Cães , Transição Epitelial-Mesenquimal/genética , Gangliosídeo Galactosiltransferase/metabolismo , Humanos , Glicoproteínas de Membrana/genética , Mutação/genética , Ligação Proteica , Estrutura Terciária de Proteína/genética , Transporte Proteico/genética , Transdução de Sinais , Quinases Associadas a rho/metabolismoRESUMO
The neuronal α7 nicotinic receptor subunit gene (CHRNA7) is partially duplicated in the human genome forming a hybrid gene (CHRFAM7A) with the novel FAM7A gene. The hybrid gene transcript, dupα7, has been identified in brain, immune cells, and the HL-60 cell line, although its translation and function are still unknown. In this study, dupα7 cDNA has been cloned and expressed in GH4C1 cells and Xenopus oocytes to study the pattern and functional role of the expressed protein. Our results reveal that dupα7 transcript was natively translated in HL-60 cells and heterologously expressed in GH4C1 cells and oocytes. Injection of dupα7 mRNA into oocytes failed to generate functional receptors, but when co-injected with α7 mRNA at α7/dupα7 ratios of 5:1, 2:1, 1:1, 1:5, and 1:10, it reduced the nicotine-elicited α7 current generated in control oocytes (α7 alone) by 26, 53, 75, 93, and 94%, respectively. This effect is mainly due to a reduction in the number of functional α7 receptors reaching the oocyte membrane, as deduced from α-bungarotoxin binding and fluorescent confocal assays. Two additional findings open the possibility that the dominant negative effect of dupα7 on α7 receptor activity observed in vitro could be extrapolated to in vivo situations. (i) Compared with α7 mRNA, basal dupα7 mRNA levels are substantial in human cerebral cortex and higher in macrophages. (ii) dupα7 mRNA levels in macrophages are down-regulated by IL-1ß, LPS, and nicotine. Thus, dupα7 could modulate α7 receptor-mediated synaptic transmission and cholinergic anti-inflammatory response.
Assuntos
Anti-Inflamatórios/farmacologia , Colina/metabolismo , Duplicação Gênica , Receptores Nicotínicos/genética , Acetilcolina/farmacologia , Regulação Alostérica/efeitos dos fármacos , Animais , Sítios de Ligação , Bungarotoxinas/metabolismo , Membrana Celular/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Condutividade Elétrica , Células HL-60 , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Oócitos/citologia , Oócitos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Receptores Nicotínicos/metabolismo , Receptor Nicotínico de Acetilcolina alfa7RESUMO
Podoplanin/PA2.26 antigen is a small transmembrane mucin expressed in different types of cancer where it is associated with increased cell migration, invasiveness and metastasis. Little is known about the mechanisms that control podoplanin expression. Here, we show that podoplanin synthesis can be controlled at different levels. We analyzed podoplanin expression in a wide panel of tumour cell lines. The podoplanin gene (PDPN) is transcribed in cells derived from sarcomas, embryonal carcinomas, squamous cell carcinomas and endometrial tumours, while cell lines derived from colon, pancreatic, ovarian and ductal breast carcinomas do not express PDPN transcripts. PDPN is expressed as two mRNAs of approximately 2.7 and approximately 0.9 kb, both of which contain the coding sequence and arise by alternative polyadenylation. Strikingly, in most of the cell lines where PDPN transcripts were found, no podoplanin or only very low levels of the protein could be detected in Western blot. Treatment of several of these cell lines with the calpain inhibitor calpeptin resulted in podoplanin accumulation, whereas lactacystin, a specific inhibitor of the proteasome, had no effect. In vitro experiments showed that podoplanin is a substrate of calpain-1. These results indicate that at least in some tumour cells absence or reduced podoplanin protein levels are due to post-translational calpain-mediated proteolysis. We also report in this article the identification of a novel podoplanin isoform that originates by alternative splicing and differs from the standard form in lacking two cytoplasmic residues (YS). YS dipeptide is highly conserved across species, suggesting that it might be functionally relevant.
Assuntos
Calpaína/metabolismo , Glicoproteínas de Membrana/biossíntese , Neoplasias/metabolismo , Processamento Alternativo , Sequência de Aminoácidos , Sequência de Bases , Calpaína/genética , Linhagem Celular Tumoral , Dipeptídeos/farmacologia , Expressão Gênica , Glicoproteínas/farmacologia , Humanos , Glicoproteínas de Membrana/genética , Dados de Sequência Molecular , Neoplasias/genética , Processamento de Proteína Pós-Traducional , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ativação TranscricionalRESUMO
The N-methyl-D-aspartate receptor (NMDAR) is fundamental to normal and pathological functioning of neurons. The receptor subunits are N-glycosylated proteins synthesized in the endoplasmic reticulum (ER) that fold, mature, and oligomerize as they transit through the secretory pathway. Although the early processes of biogenesis are fundamental to NMDAR expression and function, our knowledge of them is nevertheless limited. Additionally, the investigation of NMDAR synthesis is highly relevant, in that ER dysfunction, frequently associated with acute and degenerative brain diseases, might alter this process. We characterize here the effect of ER stress produced by inhibition of N-glycosylation on NMDAR synthesis and function. We use first heterologous systems of NMDAR expression in which NR1 and NR2A subunits are synthesized in nonneuronal cells. The function of these NMDARs as Ca2+ channels is repressed by tunicamycin, because of the inhibition of NR1, but no NR2A, synthesis. The regulation of NR1 is relevant to the central nervous system, in that a dramatic decrease in synthesis of this subunit and assembly of NMDARs is observed in cortical neurons treated with tunicamycin. The inhibition of NR1 synthesis is not due to changes in levels of mRNA but associated with the earliest stages in NMDAR biogenesis. The inhibition of N-glycosylation activates ER-specific stress responses in neurons, which include the ER-associated degradation (ERAD) mechanism responsible for differential and extremely efficient degradation of nonglycosylated NR1 by the proteasome after ubiquitination. Because this is an obligatory NMDAR component, the significant sensitivity of NR1 to ER stress will have important consequences on receptor function.