Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 122(5): 741-752, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36751130

RESUMO

Members of the fatty acid binding protein (FABP) family function as intracellular transporters of long-chain fatty acids and other hydrophobic molecules to different cellular compartments. Brain FABP (FABP7) exhibits ligand-directed differences in cellular transport. For example, when FABP7 binds to docosahexaenoic acid (DHA), the complex relocates to the nucleus and influences transcriptional activity, whereas FABP7 bound with monosaturated fatty acids remains in the cytosol. Preferential binding of FABP7 to polyunsaturated fatty acids like DHA has been previously observed and is thought to play a role in differential localization. However, we find that at 37°C, FABP7 does not display strong selectivity, suggesting that the conformational ensemble of FABP7 and its perturbation upon binding may be important. We use molecular dynamics simulations, NMR, and a variety of biophysical techniques to better understand the conformational ensemble of FABP7, how it is perturbed by fatty acid binding, and how this may be related to ligand-directed transport. We find that FABP7 has high degree of conformational heterogeneity that is substantially reduced upon ligand binding. We also observe substantial heterogeneity in ligand binding poses, which is consistent with our finding that ligand binding is resistant to mutations in key polar residues in the binding pocket. Our NMR experiments show that DHA binding leads to chemical shift perturbations in residues near the nuclear localization signal, which may point toward a mechanism of differential transport.


Assuntos
Proteínas de Ligação a Ácido Graxo , Simulação de Dinâmica Molecular , Ligantes , Proteínas de Ligação a Ácido Graxo/química , Proteína 7 de Ligação a Ácidos Graxos/genética , Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados
2.
Biophys J ; 122(4): 603-615, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36698315

RESUMO

Fatty acid-binding proteins (FABPs) are chaperones that facilitate the transport of long-chain fatty acids within the cell and can provide cargo-dependent localization to specific cellular compartments. Understanding the nature of this transport is important because lipid signaling functions are associated with metabolic pathways impacting disease pathologies including cancer, autism, and schizophrenia. FABPs often associate with cell membranes to acquire and deliver their bound cargo as part of transport. We focus on brain FABP (FABP7), which demonstrates localization to the cytoplasm and nucleus, influencing transcription and fatty acid metabolism. We use a combined biophysical-computational approach to elucidate the interaction between FABP7 and model membranes. Specifically, we use multiple experiments to demonstrate that FABP7 can bind oleic acid and docosahexaenoic acid micelles. Data from NMR and multiscale molecular dynamics simulations reveal that the interaction with micelles is through FABP7's portal region residues. Simulations suggest that binding to membranes occurs through the same residues as micelles. Simulations also capture binding events where fatty acids dissociate from the membrane and enter FABP7's binding pocket. Overall, our data shed light on the interactions between FABP7 and OA or DHA micelles and provide insight into the transport of long-chain fatty acids.


Assuntos
Ácidos Graxos , Neoplasias , Humanos , Ácidos Graxos/metabolismo , Micelas , Proteínas de Ligação a Ácido Graxo/química , Neoplasias/metabolismo , Membrana Celular/metabolismo , Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Proteínas Supressoras de Tumor/metabolismo
3.
ACS Sens ; 4(1): 143-151, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30562004

RESUMO

A major challenge in effectively treating infections is to provide timely diagnosis of a bacterial or viral agent. Current cell culture methods require >24 h to identify the cause of infection. The Toll-like Receptor (TLR) family of proteins can identify classes of pathogens and has been shown to work well in an impedance-based biosensor, where the protein is attached to an electrode via a self-assembled monolayer (SAM). While the sensitivity of these sensors has been good, they contain a high resistance (>1 kΩ) SAM, generating relatively small signals and requiring longer data collection, which is ill-suited to implementation outside of a laboratory. Here, we describe a novel approach to increase the signal magnitude and decrease the measurement time of a TLR-4 biosensor by inserting a redox-active ferrocenyl-terminated alkanethiol into a mixed SAM containing hydroxyl- and carboxyl-terminated alkanethiols. The SAM formation and modification was confirmed via contact angle and X-ray photoelectron spectroscopy measurements, with TLR-4 immobilization demonstrated through a modified immunosorbent assay. It is shown that these TLR-4 biosensors respond selectively to their intended target, Gram-negative bacteria at levels between 1 and 105 lysed cells/mL, while remaining insensitive to Gram-positive bacteria or viral particles at up to 105 particles/mL. Furthermore, the signal enhancement due to the addition of ferrocene decreased the measurement time to less than 1 min and has enabled this sensor to be used with an inexpensive, portable, hand-held potentiostat that could be easily implemented in field settings.


Assuntos
Técnicas Biossensoriais/métodos , Compostos Ferrosos/química , Metalocenos/química , Salmonella typhimurium/isolamento & purificação , Receptor 4 Toll-Like/metabolismo , Técnicas Eletroquímicas/métodos , Ácidos Graxos/química , Proteínas Imobilizadas/metabolismo , Lipopolissacarídeos/metabolismo , Membranas Artificiais , Oxirredução , Multimerização Proteica , Salmonella typhimurium/química , Compostos de Sulfidrila/química
4.
Genetics ; 199(4): 1065-76, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25701288

RESUMO

Lesions in DNA can block replication fork progression, leading to its collapse and gross chromosomal rearrangements. To circumvent such outcomes, the DNA damage tolerance (DDT) pathway becomes engaged, allowing the replisome to bypass a lesion and complete S phase. Chromatin remodeling complexes have been implicated in the DDT pathways, and here we identify the NuA4 remodeler, which is a histone acetyltransferase, to function on the translesion synthesis (TLS) branch of DDT. Genetic analyses in Saccharomyces cerevisiae showed synergistic sensitivity to MMS when NuA4 alleles, esa1-L254P and yng2Δ, were combined with the error-free bypass mutant ubc13Δ. The loss of viability was less pronounced when NuA4 complex mutants were disrupted in combination with error-prone/TLS factors, such as rev3Δ, suggesting an epistatic relationship between NuA4 and error-prone bypass. Consistent with cellular viability measurements, replication profiles after exposure to MMS indicated that small regions of unreplicated DNA or damage were present to a greater extent in esa1-L254P/ubc13Δ mutants, which persist beyond the completion of bulk replication compared to esa1-L254P/rev3Δ. The critical role of NuA4 in error-prone bypass is functional even after the bulk of replication is complete. Underscoring this observation, when Yng2 expression is restricted specifically to G2/M of the cell cycle, viability and TLS-dependent mutagenesis rates were restored. Lastly, disruption of HTZ1, which is a target of NuA4, also resulted in mutagenic rates of reversion on level with esa1-L254P and yng2Δ mutants, indicating that the histone variant H2A.Z functions in vivo on the TLS branch of DDT.


Assuntos
Dano ao DNA , Histona Acetiltransferases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Acetiltransferases , Ciclo Celular , Replicação do DNA , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Epistasia Genética , Histona Acetiltransferases/genética , Histonas/genética , Histonas/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo
5.
J Cell Sci ; 118(Pt 1): 199-210, 2005 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-15615784

RESUMO

We have previously reported that Nak1, a group-II germinal center (GC) kinase, is essential for polarized growth in Schizosaccharomyces pombe. Here, we provide evidence that Nak1 regulates cell growth and polarity, in part, through its interactions with Hob1 (an Rvs167/amphiphysin homolog) and Wsp1 (Wiskott-Aldrich-syndrome-protein homolog). We found that Nak1, Hob1 and Wsp1 interact physically, and that both Hob1/green-fluorescent-protein (Hob1-GFP) and Wsp1-GFP fusion proteins localized to F-actin patches at growing cell ends and medial division sites. Hob1-GFP was dissociated from patches in cells lacking Wsp1. Also, Hob1 overexpression dissociated Wsp1-GFP from foci, inhibited Wsp1-directed F-actin formation in vitro and partially restored polarity defects associated with Wsp1 overexpression or nak1 repression. Furthermore, loss of both Wsp1 and Hob1 resulted in rounded cells, slow growth and multiple septae. Together, these observations suggest that Hob1 and Wsp1 cooperate to mediate cell polarity, growth and division. Repression of nak1 resulted in a random redistribution of Hob1-GFP and Wsp1-GFP foci, and inhibition of Wsp1-directed F-actin formation in vitro. Furthermore, hob1delta and wsp1delta mutants exhibited synthetic growth defects in combination with nak1 repression, suggesting that Nak1 has redundant functions with Hob1 and Wsp1. Collectively, our results suggest that Nak1 both regulates and cooperates with Hob1 and Wsp1 to promote F-actin formation and polarized cell growth.


Assuntos
Proteínas de Transporte/metabolismo , Polaridade Celular/genética , Proteínas Fúngicas/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/crescimento & desenvolvimento , Proteínas do Citoesqueleto , Proteínas Fúngicas/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Mutação , Testes de Precipitina , Proteínas Serina-Treonina Quinases , Proteínas Recombinantes de Fusão/metabolismo , Técnicas do Sistema de Duplo-Híbrido
6.
J Biol Chem ; 277(42): 39609-16, 2002 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-12154084

RESUMO

The classical cadherins, definitive proteins of the cadherin superfamily, are characterized functionally by their ability to mediate calcium-dependent cell aggregation in vitro. To test hypothetical mechanisms of adhesion, we have constructed two mutants of the chicken E-cadherin protein, one with the highly conserved His-Ala-Val (HAV) sequence motif reversed to Val-Ala-His (VAH), the other lacking the first extracellular domain (EC1). The inversion of HAV to VAH has no effect on the capacity of E-cadherin to mediate adhesion. Deletion of EC1 completely eliminates the ability of E-cadherin to mediate homophilic adhesion, but the deletion mutant is capable of adhering heterophilically to both unmutated E-cadherin and to the HAV/VAH mutant. These results demonstrate that the conserved HAV sequence motif is not involved in cadherin-mediated adhesion as has been suggested previously and supports the idea that in the context of the cell surface, cadherin-mediated cell-cell adhesion involves an interaction of EC1 with other domains of the cadherin extracellular moiety and not the "linear zipper" model, which posits trans interactions only between EC1 on apposing cell surfaces.


Assuntos
Caderinas/química , Alanina/química , Motivos de Aminoácidos , Animais , Biotinilação , Western Blotting , Caderinas/metabolismo , Cálcio/metabolismo , Adesão Celular , Linhagem Celular , Membrana Celular/metabolismo , Galinhas , Histidina/química , Íons , Camundongos , Microscopia de Fluorescência , Mutação , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Transdução de Sinais , Fatores de Tempo , Transfecção , Valina/química , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA