Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
EBioMedicine ; 103: 105145, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38713924

RESUMO

BACKGROUND: There is increased evidence that the effects of stem cells can mostly be duplicated by administration of their secretome which might streamline the translation towards the clinics. METHODS: The 12-patient SECRET-HF phase 1 trial has thus been designed to determine the feasibility and safety of repeated intravenous injections of the extracellular vesicle (EV)-enriched secretome of cardiovascular progenitor cells differentiated from pluripotent stem cells in severely symptomatic patients with drug-refractory left ventricular (LV) dysfunction secondary to non-ischemic dilated cardiomyopathy. Here we report the case of the first treated patient (baseline NYHA class III; LV Ejection Fraction:25%) in whom a dose of 20 × 109 particles/kg was intravenously infused three times three weeks apart. FINDINGS: In addition to demonstrating the feasibility of producing a cardiac cell secretome compliant with Good Manufacturing Practice standards, this case documents the excellent tolerance of its repeated delivery, without any adverse events during or after infusions. Six months after the procedure, the patient is in NYHA Class II with improved echo parameters, a reduced daily need for diuretics (from 240 mg to 160 mg), no firing from the previously implanted automatic internal defibrillator and no alloimmunization against the drug product, thereby supporting its lack of immunogenicity. INTERPRETATION: The rationale underlying the intravenous route is that the infused EV-enriched secretome may act by rewiring endogenous immune cells, both circulating and in peripheral organs, to take on a reparative phenotype. These EV-modified immune cells could then traffic to the heart to effect tissue repair, including mitigation of inflammation which is a hallmark of cardiac failure. FUNDING: This trial is funded by the French Ministry of Health (Programme Hospitalier de Recherche CliniqueAOM19330) and the "France 2030" National Strategy Program (ANR-20-F2II-0003). It is sponsored by Assistance Publique-Hôpitaux de Paris.


Assuntos
Insuficiência Cardíaca , Secretoma , Humanos , Insuficiência Cardíaca/terapia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/etiologia , Secretoma/metabolismo , Masculino , Vesículas Extracelulares/metabolismo , Pessoa de Meia-Idade , Resultado do Tratamento
2.
Front Cardiovasc Med ; 10: 1206279, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37485274

RESUMO

Background: Current treatments of chemotherapy-induced cardiomyopathy (CCM) are of limited efficacy. We assessed whether repeated intravenous injections of human extracellular vesicles from cardiac progenitor cells (EV-CPC) could represent a new therapeutic option and whether EV manufacturing according to a Good Manufacturing Practices (GMP)-compatible process did not impair their bioactivity. Methods: Immuno-competent mice received intra-peritoneal injections (IP) of doxorubicin (DOX) (4 mg/kg each; cumulative dose: 12 mg/kg) and were then intravenously (IV) injected three times with EV-CPC (total dose: 30 billion). Cardiac function was assessed 9-11 weeks later by cardiac magnetic resonance imaging (CMR) using strain as the primary end point. Then, immuno-competent rats received 5 IP injections of DOX (3 mg/kg each; cumulative dose 15 mg/kg) followed by 3 equal IV injections of GMP-EV (total dose: 100 billion). Cardiac function was assessed by two dimensional-echocardiography. Results: In the chronic mouse model of CCM, DOX + placebo-injected hearts incurred a significant decline in basal (global, epi- and endocardial) circumferential strain compared with sham DOX-untreated mice (p = 0.043, p = 0.042, p = 0.048 respectively) while EV-CPC preserved these indices. Global longitudinal strain followed a similar pattern. In the rat model, IV injections of GMP-EV also preserved left ventricular end-systolic and end-diastolic volumes compared with untreated controls. Conclusions: Intravenously-injected extracellular vesicles derived from CPC have cardio-protective effects which may make them an attractive user-friendly option for the treatment of CCM.

3.
Theranostics ; 11(20): 10114-10124, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34815807

RESUMO

Background: Extracellular vesicles (EV) mediate the therapeutic effects of stem cells but it is unclear whether this involves cardiac regeneration mediated by endogenous cardiomyocyte proliferation. Methods: Bi-transgenic MerCreMer/ZEG (n = 15/group) and Mosaic Analysis With Double Markers (MADM; n = 6/group) mouse models underwent permanent coronary artery ligation and received, 3 weeks later, 10 billion EV (from human iPS-derived cardiovascular progenitor cells [CPC]), or saline, injected percutaneously under echo guidance in the peri-infarcted myocardium. Endogenous cardiomyocyte proliferation was tracked by EdU labeling and biphoton microscopy. Other end points, including cardiac function (echocardiography and MRI), histology and transcriptomics were blindly assessed 4-6 weeks after injections. Results: There was no proliferation of cardiomyocytes in either transgenic mouse strains. Nevertheless, EV improved cardiac function in both models. In MerCreMer/ZEG mice, LVEF increased by 18.3 ± 0.2% between baseline and the end-study time point in EV-treated hearts which contrasted with a decrease by 2.3 ± 0.2% in the PBS group; MADM mice featured a similar pattern as intra-myocardial administration of EV improved LVEF by 13.3 ± 0.16% from baseline whereas it decreased by 14.4 ± 0.16% in the control PBS-injected group. This functional improvement was confirmed by MRI and associated with a reduction in infarct size, the decreased expression of several pro-fibrotic genes and an overexpression of the anti-fibrotic miRNA 133-a1 compared to controls. Experiments with an anti-miR133-a demonstrated that the cardio-reparative effects of EV were partly abrogated. Conclusions: EV-CPC do not trigger cardiomyocyte proliferation but still improve cardiac function by other mechanisms which may include the regulation of fibrosis.


Assuntos
Vesículas Extracelulares/metabolismo , Infarto do Miocárdio/terapia , Miócitos Cardíacos/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células Cultivadas , Modelos Animais de Doenças , Vesículas Extracelulares/transplante , Fibrose/fisiopatologia , Regeneração Tecidual Guiada/métodos , Insuficiência Cardíaca/metabolismo , Testes de Função Cardíaca/métodos , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Camundongos , Camundongos Transgênicos , MicroRNAs/metabolismo , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos
4.
Cardiovasc Res ; 117(1): 292-307, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32049348

RESUMO

AIMS: The cardioprotective effects of human induced pluripotent stem cell-derived cardiovascular progenitor cells (CPC) are largely mediated by the paracrine release of extracellular vesicles (EV). We aimed to assess the immunological behaviour of EV-CPC, which is a prerequisite for their clinical translation. METHODS AND RESULTS: Flow cytometry demonstrated that EV-CPC expressed very low levels of immune relevant molecules including HLA Class I, CD80, CD274 (PD-L1), and CD275 (ICOS-L); and moderate levels of ligands of the natural killer (NK) cell activating receptor, NKG2D. In mixed lymphocyte reactions, EV-CPC neither induced nor modulated adaptive allogeneic T cell immune responses. They also failed to induce NK cell degranulation, even at high concentrations. These in vitro effects were confirmed in vivo as repeated injections of EV-CPC did not stimulate production of immunoglobulins or affect the interferon (IFN)-γ responses from primed splenocytes. In a mouse model of chronic heart failure, intra-myocardial injections of EV-CPC, 3 weeks after myocardial infarction, decreased both the number of cardiac pro-inflammatory Ly6Chigh monocytes and circulating levels of pro-inflammatory cytokines (IL-1α, TNF-α, and IFN-γ). In a model of acute infarction, direct cardiac injection of EV-CPC 2 days after infarction reduced pro-inflammatory macrophages, Ly6Chigh monocytes, and neutrophils in heart tissue as compared to controls. EV-CPC also reduced levels of pro-inflammatory cytokines IL-1α, IL-2, and IL-6, and increased levels of the anti-inflammatory cytokine IL-10. These effects on human macrophages and monocytes were reproduced in vitro; EV-CPC reduced the number of pro-inflammatory monocytes and M1 macrophages, while increasing the number of anti-inflammatory M2 macrophages. CONCLUSIONS: EV-CPC do not trigger an immune response either in in vitro human allogeneic models or in immunocompetent animal models. The capacity for orienting the response of monocyte/macrophages towards resolution of inflammation strengthens the clinical attractiveness of EV-CPC as an acellular therapy for cardiac repair.


Assuntos
Proliferação de Células , Vesículas Extracelulares/transplante , Insuficiência Cardíaca/cirurgia , Células-Tronco Pluripotentes Induzidas/transplante , Infarto do Miocárdio/cirurgia , Miocárdio/imunologia , Miócitos Cardíacos/transplante , Regeneração , Animais , Linhagem Celular , Técnicas de Cocultura , Citocinas/metabolismo , Modelos Animais de Doenças , Vesículas Extracelulares/imunologia , Vesículas Extracelulares/metabolismo , Insuficiência Cardíaca/imunologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Humanos , Células-Tronco Pluripotentes Induzidas/imunologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Mediadores da Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Monócitos/metabolismo , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Fenótipo , Ratos
5.
Eur Heart J ; 39(20): 1835-1847, 2018 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-29420830

RESUMO

Aims: We have shown that extracellular vesicles (EVs) secreted by embryonic stem cell-derived cardiovascular progenitor cells (Pg) recapitulate the therapeutic effects of their parent cells in a mouse model of chronic heart failure (CHF). Our objectives are to investigate whether EV released by more readily available cell sources are therapeutic, whether their effectiveness is influenced by the differentiation state of the secreting cell, and through which mechanisms they act. Methods and results: The total EV secreted by human induced pluripotent stem cell-derived cardiovascular progenitors (iPSC-Pg) and human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) were isolated by ultracentrifugation and characterized by Nanoparticle Tracking Analysis, western blot, and cryo-electron microscopy. In vitro bioactivity assays were used to evaluate their cellular effects. Cell and EV microRNA (miRNA) content were assessed by miRNA array. Myocardial infarction was induced in 199 nude mice. Three weeks later, mice with left ventricular ejection fraction (LVEF) ≤ 45% received transcutaneous echo-guided injections of iPSC-CM (1.4 × 106, n = 19), iPSC-Pg (1.4 × 106, n = 17), total EV secreted by 1.4 × 106 iPSC-Pg (n = 19), or phosphate-buffered saline (control, n = 17) into the peri-infarct myocardium. Seven weeks later, hearts were evaluated by echocardiography, histology, and gene expression profiling, blinded to treatment group. In vitro, EV were internalized by target cells, increased cell survival, cell proliferation, and endothelial cell migration in a dose-dependent manner and stimulated tube formation. Extracellular vesicles were rich in miRNAs and most of the 16 highly abundant, evolutionarily conserved miRNAs are associated with tissue-repair pathways. In vivo, EV outperformed cell injections, significantly improving cardiac function through decreased left ventricular volumes (left ventricular end systolic volume: -11%, P < 0.001; left ventricular end diastolic volume: -4%, P = 0.002), and increased LVEF (+14%, P < 0.0001) relative to baseline values. Gene profiling revealed that EV-treated hearts were enriched for tissue reparative pathways. Conclusion: Extracellular vesicles secreted by iPSC-Pg are effective in the treatment of CHF, possibly, in part, through their specific miRNA signature and the associated stimulation of distinct cardioprotective pathways. The processing and regulatory advantages of EV could make them effective substitutes for cell transplantation.


Assuntos
Vesículas Extracelulares/transplante , Insuficiência Cardíaca/terapia , Animais , Proliferação de Células , Sobrevivência Celular , Células-Tronco Embrionárias/ultraestrutura , Vesículas Extracelulares/genética , Insuficiência Cardíaca/patologia , Humanos , Camundongos Nus , MicroRNAs/análise , Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Miócitos Cardíacos/ultraestrutura , Células-Tronco Pluripotentes/ultraestrutura , Resultado do Tratamento
6.
J Exp Med ; 213(7): 1353-74, 2016 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-27353089

RESUMO

Acute myocardial infarction (MI) is a severe ischemic disease responsible for heart failure and sudden death. Inflammatory cells orchestrate postischemic cardiac remodeling after MI. Studies using mice with defective mast/stem cell growth factor receptor c-Kit have suggested key roles for mast cells (MCs) in postischemic cardiac remodeling. Because c-Kit mutations affect multiple cell types of both immune and nonimmune origin, we addressed the impact of MCs on cardiac function after MI, using the c-Kit-independent MC-deficient (Cpa3(Cre/+)) mice. In response to MI, MC progenitors originated primarily from white adipose tissue, infiltrated the heart, and differentiated into mature MCs. MC deficiency led to reduced postischemic cardiac function and depressed cardiomyocyte contractility caused by myofilament Ca(2+) desensitization. This effect correlated with increased protein kinase A (PKA) activity and hyperphosphorylation of its targets, troponin I and myosin-binding protein C. MC-specific tryptase was identified to regulate PKA activity in cardiomyocytes via protease-activated receptor 2 proteolysis. This work reveals a novel function for cardiac MCs modulating cardiomyocyte contractility via alteration of PKA-regulated force-Ca(2+) interactions in response to MI. Identification of this MC-cardiomyocyte cross-talk provides new insights on the cellular and molecular mechanisms regulating the cardiac contractile machinery and a novel platform for therapeutically addressable regulators.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Mastócitos/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Miofibrilas/metabolismo , Animais , Carboxipeptidases A/genética , Carboxipeptidases A/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Camundongos , Camundongos Knockout , Contração Miocárdica/genética , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Miofibrilas/patologia , Proteólise , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptor PAR-2/genética , Receptor PAR-2/metabolismo
7.
J Heart Lung Transplant ; 35(6): 795-807, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27041495

RESUMO

BACKGROUND: Cell-based therapies are being explored as a therapeutic option for patients with chronic heart failure following myocardial infarction. Extracellular vesicles (EV), including exosomes and microparticles, secreted by transplanted cells may orchestrate their paracrine therapeutic effects. We assessed whether post-infarction administration of EV released by human embryonic stem cell-derived cardiovascular progenitors (hESC-Pg) can provide equivalent benefits to administered hESC-Pg and whether hESC-Pg and EV treatments activate similar endogenous pathways. METHODS: Mice underwent surgical occlusion of their left coronary arteries. After 2-3 weeks, 95 mice included in the study were treated with hESC-Pg, EV, or Minimal Essential Medium Alpha Medium (alpha-MEM; vehicle control) delivered by percutaneous injections under echocardiographic guidance into the peri-infarct myocardium. functional and histologic end-points were blindly assessed 6 weeks later, and hearts were processed for gene profiling. Genes differentially expressed between control hearts and hESC-Pg-treated and EV-treated hearts were clustered into functionally relevant pathways. RESULTS: At 6 weeks after hESC-Pg administration, treated mice had significantly reduced left ventricular end-systolic (-4.20 ± 0.96 µl or -7.5%, p = 0.0007) and end-diastolic (-4.48 ± 1.47 µl or -4.4%, p = 0.009) volumes compared with baseline values despite the absence of any transplanted hESC-Pg or human embryonic stem cell-derived cardiomyocytes in the treated mouse hearts. Equal benefits were seen with the injection of hESC-Pg-derived EV, whereas animals injected with alpha-MEM (vehicle control) did not improve significantly. Histologic examination suggested a slight reduction in infarct size in hESC-Pg-treated animals and EV-treated animals compared with alpha-MEM-treated control animals. In the hESC-Pg-treated and EV-treated groups, heart gene profiling identified 927 genes that were similarly upregulated compared with the control group. Among the 49 enriched pathways associated with these up-regulated genes that could be related to cardiac function or regeneration, 78% were predicted to improve cardiac function through increased cell survival and/or proliferation or DNA repair as well as pathways related to decreased fibrosis and heart failure. CONCLUSIONS: In this post-infarct heart failure model, either hESC-Pg or their secreted EV enhance recovery of cardiac function and similarly affect cardiac gene expression patterns that could be related to this recovery. Although the mechanisms by which EV improve cardiac function remain to be determined, these results support the idea that a paracrine mechanism is sufficient to effect functional recovery in cell-based therapies for post-infarction-related chronic heart failure.


Assuntos
Insuficiência Cardíaca , Animais , Doença Crônica , Células-Tronco Embrionárias , Vesículas Extracelulares , Humanos , Camundongos , Infarto do Miocárdio , Miocárdio , Miócitos Cardíacos
8.
Catheter Cardiovasc Interv ; 86(2): E58-65, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25810163

RESUMO

OBJECTIVES: To assess the impact of gender on myocardial revascularization using data collected in a French nationwide registry: the national observational study of diagnostic and interventional cardiac catheterization (ONACI). BACKGROUND: Gender differences in management of patients with acute coronary syndromes (ACS) have been reported. METHODS: We analysed data from a nationwide French prospective multicentre registry including 64,932 suspected ACS patients recruited in 99 centres from 2004 to 2008. RESULTS: Overall, women were older (70.7 ± 12.7 vs. 63.8 ± 12.9 years), had a higher cardiovascular risk profile, and were more frequently admitted with non ST-elevation myocardial infarction or unstable angina (NSTEMI/UA) compared to men (73% vs. 68%). Women had significantly more angiographically normal coronary arteries or non-significant coronary artery disease (CAD) in both STEMI (6% vs. 3%) and NSTEMI/UA (21% vs. 11%) while men had more severe CAD. After adjusting for age, cardiovascular risk factors, and extent of disease, myocardial revascularization (defined as the use of percutaneous coronary intervention (PCI) or coronary artery bypass grafting) was less frequently used in women (adjusted OR = 0.78; 95% CI: 0.77-0.83). For those receiving PCI, in-hospital mortality within 24 hr of intervention was higher in women (3.6% vs. 1.2%; adjusted OR = 1.51; 95% CI: 1.22-1.87). CONCLUSIONS: In the present study, despite having a higher cardiovascular risk profile, women more frequently had normal vessel/non-significant angiographic coronary artery disease. In patients with significant coronary artery disease, myocardial revascularization was less frequently used in women whatever the type of ACS.


Assuntos
Síndrome Coronariana Aguda/diagnóstico , Síndrome Coronariana Aguda/terapia , Cateterismo Cardíaco/estatística & dados numéricos , Ponte de Artéria Coronária/estatística & dados numéricos , Disparidades em Assistência à Saúde , Intervenção Coronária Percutânea/estatística & dados numéricos , Avaliação de Processos em Cuidados de Saúde/estatística & dados numéricos , Síndrome Coronariana Aguda/mortalidade , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Cateterismo Cardíaco/efeitos adversos , Cateterismo Cardíaco/mortalidade , Distribuição de Qui-Quadrado , Angiografia Coronária/estatística & dados numéricos , Ponte de Artéria Coronária/efeitos adversos , Ponte de Artéria Coronária/mortalidade , Feminino , França , Disparidades nos Níveis de Saúde , Mortalidade Hospitalar , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Razão de Chances , Intervenção Coronária Percutânea/efeitos adversos , Intervenção Coronária Percutânea/mortalidade , Valor Preditivo dos Testes , Pontuação de Propensão , Sistema de Registros , Medição de Risco , Fatores de Risco , Índice de Gravidade de Doença , Fatores Sexuais , Resultado do Tratamento
9.
Eur J Hum Genet ; 21(12): 1396-402, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23652377

RESUMO

In eutherian mammals, one X-chromosome in every XX somatic cell is transcriptionally silenced through the process of X-chromosome inactivation (XCI). Females are thus functional mosaics, where some cells express genes from the paternal X, and the others from the maternal X. The relative abundance of the two cell populations (X-inactivation pattern, XIP) can have significant medical implications for some females. In mice, the 'choice' of which X to inactivate, maternal or paternal, in each cell of the early embryo is genetically influenced. In humans, the timing of XCI choice and whether choice occurs completely randomly or under a genetic influence is debated. Here, we explore these questions by analysing the distribution of XIPs in large populations of normal females. Models were generated to predict XIP distributions resulting from completely random or genetically influenced choice. Each model describes the discrete primary distribution at the onset of XCI, and the continuous secondary distribution accounting for changes to the XIP as a result of development and ageing. Statistical methods are used to compare models with empirical data from Danish and Utah populations. A rigorous data treatment strategy maximises information content and allows for unbiased use of unphased XIP data. The Anderson-Darling goodness-of-fit statistics and likelihood ratio tests indicate that a model of genetically influenced XCI choice better fits the empirical data than models of completely random choice.


Assuntos
Cromossomos Humanos X/metabolismo , Inativação do Cromossomo X/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Humanos , Recém-Nascido , Pessoa de Meia-Idade , Adulto Jovem
10.
J Gastroenterol Hepatol ; 28(3): 560-4, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23033845

RESUMO

BACKGROUND AND AIM: Our objective was to identify the molecular genetic basis of an Alagille-like condition not linked to JAG1 or NOTCH2 in two related sibships. METHODS: Because of common ancestry, and an autosomal recessive mode of inheritance, it was hypothesized that all affected and no unaffected individuals would be homozygous for the same haplotype in the region of the causative gene. Single nucleotide polymorphism arrays were therefore used to genotype 3 affected individuals from two sibships, their mothers and four unaffected siblings, to identify regions of homozygosity. Genes within the largest regions were prioritized and sequenced for mutations. Mutant RNA transcripts were also sequenced. RESULTS: A novel splice acceptor site mutation in the ATP8B1 gene was identified (a G-C preceding exon 16 resulting in a 4 bp deletion and frameshift from the 5' end of exon 16). This result was unexpected because ATP8B1 mutations are associated with progressive familial intrahepatic cholestasis type 1 (PFIC1). Intrahepatic bile duct paucity, cardiac anomalies, renal tubular acidosis and hypothyroidism led to an initial diagnosis of Alagille syndrome. However, in retrospect, abnormal sweat chloride, normal gamma-glutamyl transferase, normal to low cholesterol, and an autosomal recessive mode of inheritance were consistent with PFIC1. Renal tubular acidosis, hypothyroidism and cardiac anomalies have not previously been associated with PFIC1. CONCLUSION: This work expands the phenotypic spectrum of PFIC1, and highlights the overlap in clinical phenotype between Alagille syndrome and PFIC1. Knowledge of the causative mutation allows for carrier testing and prenatal diagnosis in this community.


Assuntos
Adenosina Trifosfatases/genética , Colestase Intra-Hepática/genética , Mutação da Fase de Leitura , Sítios de Splice de RNA/genética , Criança , Colestase Intra-Hepática/diagnóstico , Feminino , Marcadores Genéticos , Genótipo , Técnicas de Genotipagem , Humanos , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA , Irmãos
11.
J Hum Genet ; 56(5): 390-7, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21412246

RESUMO

The gene dosage inequality between females with two X-chromosomes and males with one is compensated for by X-chromosome inactivation (XCI), which ensures the silencing of one X in every somatic cell of female mammals. XCI in humans results in a mosaic of two cell populations: those expressing the maternal X-chromosome and those expressing the paternal X-chromosome. We have previously shown that the degree of mosaicism (the X-inactivation pattern) in a Canadian family is directly related to disease severity in female carriers of the X-linked recessive bleeding disorder, haemophilia A. The distribution of X-inactivation patterns in this family was consistent with a genetic trait having a co-dominant mode of inheritance, suggesting that XCI choice may not be completely random. To identify genetic elements that could be responsible for biased XCI choice, a linkage analysis was undertaken using an approach tailored to accommodate the continuous nature of the X-inactivation pattern phenotype in the Canadian family. Several X-linked regions were identified, one of which overlaps with a region previously found to be linked to familial skewed XCI. SA2, a component of the cohesin complex is identified as a candidate gene that could participate in XCI through its association with CTCF.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Cromossomos Humanos X/genética , Inativação do Cromossomo X/genética , Canadá , Fator VIII/genética , Feminino , Ligação Genética , Genótipo , Hemofilia A/genética , Humanos , Masculino , Mutação/genética , Linhagem , Coesinas
12.
Eur J Hum Genet ; 15(6): 628-37, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17342157

RESUMO

Factor VIII gene, F8, mutations cause haemophilia A (HA), an X-linked recessive disorder. Expression in heterozygous females has been ascribed to skewed X-chromosome inactivation (XCI). To investigate the cause of HA in three heterozygous females within an Atlantic Canadian kindred, the proband (severely affected girl, FVIII activity: 2%) and 17 relatives across three generations were studied. F8 genotype, FVIII activity, XCI ratio (XCIR) (paternal active X: maternal active X), karyotype, submegabase resolution tiling set array competitive genome hybridization (competitive genomic hybridization (SMRT)), and microsatellite analyses were utilized. A positive linear relationship between FVIII activity and percentage-activated normal X-chromosome was found in HA heterozygous females (R(2)=0.87). All affected, but no unaffected females, had an XCIR skewed toward activation of the mutant X-chromosome (proband 92:8, SD 2). Unexpectedly, high numbers of females have dramatically skewed XCIRs (>80:20 or <20:80) (P<0.05). The distribution of XCIR frequencies within this family was significantly different than predicted by normal population data or models of random XCI (P<0.025), with more females having higher degrees of skewing. Known causes of skewing, such as chromosomal abnormalities, selection against deleterious alleles, and X-inactive-specific transcript mutations, are not consistent with our results. This study shows that FVIII activity in HA heterozygous females can be directly related to XCI skewing, and that low FVIII activity in females in this family is due to unfavourable XCI skewing. Further, the findings suggest that these XCI ratios are genetically influenced, consistent with a novel heritable human X controlling element (XCE) functioning similarly to the mouse Xce.


Assuntos
Fator VIII/genética , Hemofilia A/genética , Heterozigoto , Inativação do Cromossomo X/genética , Pré-Escolar , Inversão Cromossômica , Cromossomos Humanos X/genética , Fator VIII/metabolismo , Feminino , Ligação Genética , Humanos , Lactente , Masculino , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA