Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Investig Med ; 72(1): 80-87, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37864505

RESUMO

Dysregulated cholesterol metabolism represents an increasingly recognized feature of autism spectrum disorder (ASD). Children with fetal valproate syndrome caused by prenatal exposure to valproic acid (VPA), an anti-epileptic and mood-stabilizing drug, have a higher incidence of developing ASD. However, the role of VPA in cholesterol homeostasis in neurons and microglial cells remains unclear. Therefore, we examined the effect of VPA exposure on regulation of cholesterol homeostasis in the human microglial clone 3 (HMC3) cell line and the human neuroblastoma cell line SH-SY5Y. HMC3 and SH-SY5Y cells were each incubated in increasing concentrations of VPA, followed by quantification of mRNA and protein expression of cholesterol transporters and cholesterol metabolizing enzymes. Cholesterol efflux was evaluated using colorimetric assays. We found that VPA treatment in HMC3 cells significantly reduced ABCA1 mRNA, but increased ABCG1 and CD36 mRNA levels in a dose-dependent manner. However, ABCA1 and ABCG1 protein levels were reduced by VPA in HMC3. Furthermore, similar experiments in SH-SY5Y cells showed increased mRNA levels for ABCA1, ABCG1, CD36, and 27-hydroxylase with VPA treatment. VPA exposure significantly reduced protein levels of ABCA1 in a dose-dependent manner, but increased the ABCG1 protein level at the highest dose in SH-SY5Y cells. In addition, VPA treatment significantly increased cholesterol efflux in SH-SY5Y, but had no impact on efflux in HMC3. VPA differentially controls the expression of ABCA1 and ABCG1, but regulation at the transcriptional and translational levels are not consistent and changes in the expression of these genes do not correlate with cholesterol efflux in vitro.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Neuroblastoma , Gravidez , Feminino , Criança , Humanos , Ácido Valproico/farmacologia , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/genética , Colesterol/metabolismo , Antígenos CD36/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
Life (Basel) ; 13(11)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-38004296

RESUMO

Mitochondrial degeneration in various neurodegenerative diseases, specifically in Alzheimer's disease, involves excessive mitochondrial fission and reduced fusion, leading to cell damage. P110 is a seven-amino acid peptide that restores mitochondrial dynamics by acting as an inhibitor of mitochondrial fission. However, the role of P110 as a neuroprotective agent in AD remains unclear. Therefore, we performed cell culture studies to evaluate the neuroprotective effect of P110 on amyloid-ß accumulation and mitochondrial functioning. Human SH-SY5Y neuronal cells were incubated with 1 µM and 10 µM of P110, and Real-Time PCR and Western blot analysis were done to quantify the expression of genes pertaining to AD and neuronal health. Exposure of SH-SY5Y cells to P110 significantly increased APP mRNA levels at 1 µM, while BACE1 mRNA levels were increased at both 1 µM and 10 µM. However, protein levels of both APP and BACE1 were significantly reduced at 10 µM of P110. Further, P110 treatment significantly increased ADAM10 and Klotho protein levels at 10 µM. In addition, P110 exposure significantly increased active mitochondria and reduced ROS in live SH-SY5Y cells at both 1 µM and 10 µM concentrations. Taken together, our results indicate that P110 might be useful in attenuating amyloid-ß generation and improving neuronal health by maintaining mitochondrial function in neurons.

3.
J Tradit Complement Med ; 12(5): 447-454, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36081818

RESUMO

Background and aim: Resveratrol is a bioactive molecule used in dietary supplements and herbal medicines and consumed worldwide. Prior work showed that resveratrol's anti-atherogenic properties are mediated in part through the adenosine A2A receptor. The present study explores the potential contribution of adenosine A2A receptor activation to neuroprotective action of resveratrol on cognitive deficits in a model of atherosclerosis-prone systemic lupus erythematosus. Experimental procedure: Using behavioral analysis (open field, static rod, novel object recognition) and QRT-PCR, this study measured working memory, anxiety, motor coordination, and expression of mRNA in the brain. Results and conclusion: Data indicate that resveratrol increases working memory, on average but not statistically, and shows a trend towards improved motor coordination (p = 0.07) in atherosclerosis-prone lupus mice. Additionally, resveratrol tends to increase mRNA levels of SIRT1, decrease vascular endothelial growth factor and CX3CL1 mRNA in the hippocampus. Istradefylline, an adenosine A2A receptor antagonist, antagonizes the effects of resveratrol on working memory (p = 0.04) and the expression of SIRT1 (p = 0.03), vascular endothelial growth factor (p = 0.04), and CX3CL1 (p = 0.03) in the hippocampus.This study demonstrates that resveratrol could potentially be a therapeutic candidate in the modulation of cognitive dysfunction in neuropsychiatric lupus, especially motor incoordination. Further human studies, as well as optimization of resveratrol administration, could confirm whether resveratrol may be an additional resource available to reduce the burden of cognitive impairment associated with lupus. Additionally, further studies need to address the role of A2A blockade in cognitive function among the autoimmune population. Section: 3. Dietary therapy/nutrients supplements. Taxonomy classification by EVISE: autoimmunity, inflammation, neurology.

4.
Medicina (Kaunas) ; 58(9)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36143964

RESUMO

Background and Objectives: Cardiovascular (CV) risk is elevated in rheumatoid arthritis (RA). RA patient plasma causes pro-atherogenic derangements in cholesterol transport leading to macrophage foam cell formation (FCF). The TARGET randomized clinical trial compares CV benefits of 2 RA drug regimens. Hydoxychloroquine (HCQ) is a key medication used in TARGET. This study examines effects of HCQ on lipid transport to elucidate mechanisms underlying TARGET outcomes and as an indicator of likely HCQ effects on atherosclerosis in RA. Materials and Methods: THP1 human macrophages were exposed to media alone, IFNγ (atherogenic cytokine), HCQ, or HCQ + IFNγ. Cholesterol efflux protein and scavenger receptor mRNA levels were quantified by qRT-PCR and corresponding protein levels were assessed by Western blot. FCF was evaluated via Oil-Red-O and fluorescent-oxidized LDL. Intracellular cholesterol and efflux were quantified with Amplex Red assay. Results: With the exception of a decrease in the efflux protein cholesterol 27-hydroxylase in the presence IFNγ at all HCQ concentrations, no significant effect on gene or protein expression was observed upon macrophage exposure to HCQ and this was reflected in the lack of change in FCF and oxidized LDL uptake. Conclusions: HCQ did not significantly affect THP1 macrophage cholesterol transport. This is consistent with TARGET, which postulates superior effects of anti-TNF agents over sulfasalazine + HCQ.


Assuntos
Artrite Reumatoide , Aterosclerose , Aterosclerose/tratamento farmacológico , Técnicas de Cultura de Células , Colesterol/metabolismo , Humanos , Hidroxicloroquina/farmacologia , Hidroxicloroquina/uso terapêutico , Interferon gama , Macrófagos , Oxigenases de Função Mista , RNA Mensageiro/metabolismo , Sulfassalazina/metabolismo , Sulfassalazina/farmacologia , Sulfassalazina/uso terapêutico , Inibidores do Fator de Necrose Tumoral
5.
Clin Respir J ; 16(2): 84-96, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35001525

RESUMO

OBJECTIVES: Idiopathic pulmonary fibrosis (IPF) is a chronic fibrotic lung disease characterized by dry cough, fatigue, and progressive exertional dyspnea. Lung parenchyma and architecture is destroyed, compliance is lost, and gas exchange is compromised in this debilitating condition that leads inexorably to respiratory failure and death within 3-5 years of diagnosis. This review discusses treatment approaches to IPF in current use and those that appear promising for future development. DATA SOURCE: The data were obtained from the Randomized Controlled Trials and scientific studies published in English literature. We used search terms related to IPF, antifibrotic treatment, lung transplant, and management. RESULTS: Etiopathogenesis of IPF is not fully understood, and treatment options are limited. Pathological features of IPF include extracellular matrix remodeling, fibroblast activation and proliferation, immune dysregulation, cell senescence, and presence of aberrant basaloid cells. The mainstay therapies are the oral antifibrotic drugs pirfenidone and nintedanib, which can improve quality of life, attenuate symptoms, and slow disease progression. Unilateral or bilateral lung transplantation is the only treatment for IPF shown to increase life expectancy. CONCLUSION: Clearly, there is an unmet need for accelerated research into IPF mechanisms so that progress can be made in therapeutics toward the goals of increasing life expectancy, alleviating symptoms, and improving well-being.


Assuntos
Fibrose Pulmonar Idiopática , Transplante de Pulmão , Fibrose , Humanos , Fibrose Pulmonar Idiopática/diagnóstico , Fibrose Pulmonar Idiopática/tratamento farmacológico , Pulmão/patologia , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto
6.
Exp Mol Pathol ; 118: 104604, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33434610

RESUMO

INTRODUCTION AND AIMS: Oxytocin (OT) is a neuropeptide hormone secreted by the posterior pituitary gland. Deficits in OT action have been observed in patients with behavioral and mood disorders, some of which correlate with an increased risk of cardiovascular disease (CVD). Recent research has revealed a wider systemic role that OT plays in inflammatory modulation and development of atherosclerotic plaques. This study investigated the role that OT plays in cholesterol transport and foam cell formation in LPS-stimulated THP-1 human macrophages. METHODS: THP-1 differentiated macrophages were treated with media, LPS (100 ng/ml), LPS + OT (10 pM), or LPS + OT (100 pM). Changes in gene expression and protein levels of cholesterol transporters were analyzed by real time quantitative PCR (RT-qPCR) and Western blot, while oxLDL uptake and cholesterol efflux capacity were evaluated with fluorometric assays. RESULTS: RT-qPCR analysis revealed a significant increase in ABCG1 gene expression upon OT + LPS treatment, compared to LPS alone (p = 0.0081), with Western blotting supporting the increase in expression of the ABCG1 protein. Analysis of oxLDL uptake showed a significantly lower fluorescent value in LPS + OT (100pM) -treated cells when compared to LPS alone (p < 0.0001). While not statistically significant (p = 0.06), cholesterol efflux capacity increased with LPS + OT treatment. CONCLUSION: We demonstrate here that OT can attenuate LPS-mediated lipid accumulation in THP-1 macrophages. These findings support the hypothesis that OT could be used to reduce pro-inflammatory and potentially atherogenic changes observed in patients with heightened CVD risk. This study suggests further exploration of OT effects on monocyte and macrophage cholesterol handling in vivo.


Assuntos
Aterosclerose/tratamento farmacológico , Colesterol/metabolismo , Células Espumosas/efeitos dos fármacos , Inflamação/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Ocitocina/farmacologia , Placa Aterosclerótica/tratamento farmacológico , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Aterosclerose/induzido quimicamente , Aterosclerose/metabolismo , Aterosclerose/patologia , Células Cultivadas , Células Espumosas/metabolismo , Células Espumosas/patologia , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Macrófagos/metabolismo , Macrófagos/patologia , Ocitócicos/farmacologia , Placa Aterosclerótica/induzido quimicamente , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Receptores de Ocitocina/metabolismo
7.
Respir Investig ; 58(5): 320-335, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32487481

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive disease with high mortality that commonly occurs in middle-aged and older adults. IPF, characterized by a decline in lung function, often manifests as exertional dyspnea and cough. Symptoms result from a fibrotic process driven by alveolar epithelial cells that leads to increased migration, proliferation, and differentiation of lung fibroblasts. Ultimately, the differentiation of fibroblasts into myofibroblasts, which synthesize excessive amounts of extracellular matrix proteins, destroys the lung architecture. However, the factors that induce the fibrotic process are unclear. Diagnosis can be a difficult process; the gold standard for diagnosis is the multidisciplinary conference. Practical biomarkers are needed to improve diagnostic and prognostic accuracy. High-resolution computed tomography typically shows interstitial pneumonia with basal and peripheral honeycombing. Gas exchange and diffusion capacity are impaired. Treatments are limited, although the anti-fibrotic drugs pirfenidone and nintedanib can slow the progression of the disease. Lung transplantation is often contraindicated because of age and comorbidities, but it improves survival when successful. The incidence and prevalence of IPF has been increasing and there is an urgent need for improved therapies. This review covers the detailed cellular and molecular mechanisms underlying IPF progression as well as current treatments and cutting-edge research into new therapeutic targets.


Assuntos
Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/terapia , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Progressão da Doença , Feminino , Fibrose , Humanos , Fibrose Pulmonar Idiopática/diagnóstico , Fibrose Pulmonar Idiopática/patologia , Pulmão/microbiologia , Pulmão/patologia , Transplante de Pulmão , Masculino , Pessoa de Meia-Idade , Prognóstico , Piridonas/uso terapêutico , Telômero
8.
Medicina (Kaunas) ; 55(9)2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31438615

RESUMO

Background and Objectives: Atherosclerotic cardiovascular disease (CVD) remains a major cause of morbidity and mortality in persons with systemic lupus erythematosus (SLE, lupus). Atherosclerosis, which involves interplay between cholesterol metabolism and cellular inflammatory pathways, is primarily treated with statins since statins have lipid-lowering and anti-inflammatory properties. The Lupus Atherosclerosis Prevention Study (LAPS) was designed to investigate the efficacy of statins against CVD in SLE patients. LAPS demonstrated that 2 years of atorvastatin administration did not reduce atherosclerosis progression in lupus patients. In this LAPs substudy, we use cultured macrophages to explore the atherogenic properties of plasma from LAPS subjects to explain the mechanistic rationale for the inability of statins to reduce CVD in lupus. Materials and Methods: THP-1 differentiated macrophages were treated for 18 h with 10% SLE patient plasma obtained pre- and post-atorvastatin therapy or placebo. Gene expression of the following cholesterol transport genes was measured by qRT-PCR. For efflux-ATP binding cassette transporter (ABC)A1 and ABCG1, 27-hydroxylase, peroxisome proliferator-activated receptor (PPAR)γ, and liver X receptor (LXR)α; and for influx-cluster of differentiation 36 (CD36) and scavenger receptor (ScR)A1. Results: Macrophages exposed to plasma from both statin-treated and placebo-treated groups showed a significant decrease in cholesterol efflux proteins ATP binding cassette (ABC) transporters A1 and ABCG1, an increase in 27-hydroxylase, an increase in the LDL receptor and a decrease in intracellular free cholesterol. No change in influx receptors ScRA1 and CD36, nor nuclear proteins LXRα and PPARγ was observed. Conclusions: Statins do not normalize pro-atherogenic changes induced by lupus and these changes continue to worsen over time. This study provides mechanistic insight into LAPS findings by demonstrating that statins are overall ineffective in altering the balance of cholesterol transport gene expression in human macrophages. Furthermore, our study suggests that statins as a CVD treatment may not be useful in attenuating lipid overload in the SLE environment.


Assuntos
Aterosclerose/tratamento farmacológico , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Lúpus Eritematoso Sistêmico/complicações , Macrófagos/efeitos dos fármacos , Transportador 1 de Cassete de Ligação de ATP/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/genética , Adulto , Aterosclerose/complicações , Atorvastatina/uso terapêutico , Colesterol/metabolismo , Progressão da Doença , Feminino , Expressão Gênica , Humanos , Metabolismo dos Lipídeos , Receptores X do Fígado/genética , Lúpus Eritematoso Sistêmico/sangue , Macrófagos/metabolismo , Masculino , Oxigenases de Função Mista/genética , PPAR gama/genética , Plasma , RNA Mensageiro/metabolismo
9.
J Transl Med ; 17(1): 232, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31331347

RESUMO

BACKGROUND: Macrophage cholesterol efflux capacity has been identified as a predictor for cardiovascular disease. We assessed the relationship between adipocyte-derived extracellular vesicle microRNAs and macrophage cholesterol efflux capacity. METHODS: We assessed an adolescent cohort (n = 93, Age, median (IQR) = 17 (3) year, Female = 71, Male = 22) throughout the BMI continuum (BMI = 45.2 (13.2) kg/m2) for: (1) cholesterol efflux capacity and lipoprotein profiles; (2) adipocyte-derived extracellular vesicle microRNAs in serum; (3) the role of visceral adipose tissue extracellular vesicle in regulation of cholesterol efflux and cholesterol efflux gene expression in THP-1 macrophages in vitro. RESULTS: Efflux capacity was significantly associated with HDL (r = 0.30, p = 0.01) and LDL (r = 0.33, p = 0.005) particle size. Multivariate-analysis identified six microRNAs associated (p < 0.05) with cholesterol efflux capacity: miR-3129-5p (Beta = 0.695), miR-20b (0.430), miR9-5p (0.111), miR-320d (- 0.190), miR301a-5p (0.042), miR-155-5p (0.004). In response to increasing concentrations (1 µg/mL vs. 3 µg/mL) of VAT extracellular vesicle, cholesterol efflux (66% ± 10% vs. 49% ± 2%; p < 0.01) and expression of ABCA1 (FC = 1.9 ± 0.8 vs 0.5 ± 0.2; p < 0.001), CD36 (0.7 ± 0.4 vs. 2.1 ± 0.8, p = 0.02), CYP27A1 (1.4 ± 0.4 vs. 0.9 ± 0.5; p < 0.05), and LXRA (1.8 ± 1.1 vs. 0.5 ± 0.2; p < 0.05) was altered in THP-1 cells in vitro. CONCLUSION: Adipocyte-derived extracellular vesicle microRNAs may, in part, be involved macrophage cholesterol efflux regulation.


Assuntos
Tecido Adiposo/metabolismo , Colesterol/metabolismo , Vesículas Extracelulares/genética , MicroRNAs/metabolismo , Obesidade Infantil/genética , Adolescente , Transporte Biológico , MicroRNA Circulante/sangue , MicroRNA Circulante/genética , Feminino , Humanos , Lipoproteínas/sangue , Macrófagos/metabolismo , Masculino , MicroRNAs/genética , Obesidade Infantil/sangue , Células THP-1
10.
Am J Cardiovasc Drugs ; 19(5): 449-464, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30972618

RESUMO

Adenosine is an endogenous nucleoside with a short half-life that regulates many physiological functions involving the heart and cardiovascular system. Among the cardioprotective properties of adenosine are its ability to improve cholesterol homeostasis, impact platelet aggregation and inhibit the inflammatory response. Through modulation of forward and reverse cholesterol transport pathways, adenosine can improve cholesterol balance and thereby protect macrophages from lipid overload and foam cell transformation. The function of adenosine is controlled through four G-protein coupled receptors: A1, A2A, A2B and A3. Of these four, it is the A2A receptor that is in a large part responsible for the anti-inflammatory effects of adenosine as well as defense against excess cholesterol accumulation. A2A receptor agonists are the focus of efforts by the pharmaceutical industry to develop new cardiovascular therapies, and pharmacological actions of the atheroprotective and anti-inflammatory drug methotrexate are mediated via release of adenosine and activation of the A2A receptor. Also relevant are anti-platelet agents that decrease platelet activation and adhesion and reduce thrombotic occlusion of atherosclerotic arteries by antagonizing adenosine diphosphate-mediated effects on the P2Y12 receptor. The purpose of this review is to discuss the effects of adenosine on cell types found in the arterial wall that are involved in atherosclerosis, to describe use of adenosine and its receptor ligands to limit excess cholesterol accumulation and to explore clinically applied anti-platelet effects. Its impact on electrophysiology and use as a clinical treatment for myocardial preservation during infarct will also be covered. Results of cell culture studies, animal experiments and human clinical trials are presented. Finally, we highlight future directions of research in the application of adenosine as an approach to improving outcomes in persons with cardiovascular disease.


Assuntos
Adenosina/metabolismo , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/prevenção & controle , Sistema Cardiovascular/metabolismo , Plaquetas/efeitos dos fármacos , Colesterol/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA