Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Gen Virol ; 103(10)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36264606

RESUMO

Herpes simplex virus 1 (HSV1) is best known for causing oral lesions and mild clinical symptoms, but it can produce a significant range of disease severities and rates of reactivation. To better understand this phenotypic variation, we characterized 11 HSV1 strains that were isolated from individuals with diverse infection outcomes. We provide new data on genomic and in vitro plaque phenotype analysis for these isolates and compare these data to previously reported quantitation of the disease phenotype of each strain in a murine animal model. We show that integration of these three types of data permitted clustering of these HSV1 strains into four groups that were not distinguishable by any single dataset alone, highlighting the benefits of combinatorial multi-parameter phenotyping. Two strains (group 1) produced a partially or largely syncytial plaque phenotype and attenuated disease phenotypes in mice. Three strains of intermediate plaque size, causing severe disease in mice, were genetically clustered to a second group (group 2). Six strains with the smallest average plaque sizes were separated into two subgroups (groups 3 and 4) based on their different genetic clustering and disease severity in mice. Comparative genomics and network graph analysis suggested a separation of HSV1 isolates with attenuated vs. virulent phenotypes. These observations imply that virulence phenotypes of these strains may be traceable to genetic variation within the HSV1 population.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Camundongos , Animais , Herpesvirus Humano 1/genética , Fenótipo , Modelos Animais de Doenças , Genômica
2.
Viruses ; 14(4)2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35458519

RESUMO

Human alpha herpesviruses herpes simplex virus (HSV-1) and varicella zoster virus (VZV) establish latency in various cranial nerve ganglia and often reactivate in response to stress-associated immune system dysregulation. Reactivation of Epstein Barr virus (EBV), VZV, HSV-1, and cytomegalovirus (CMV) is typically asymptomatic during spaceflight, though live/infectious virus has been recovered and the shedding rate increases with mission duration. The risk of clinical disease, therefore, may increase for astronauts assigned to extended missions (>180 days). Here, we report, for the first time, a case of HSV-1 skin rash (dermatitis) occurring during long-duration spaceflight. The astronaut reported persistent dermatitis during flight, which was treated onboard with oral antihistamines and topical/oral steroids. No HSV-1 DNA was detected in 6-month pre-mission saliva samples, but on flight day 82, a saliva and rash swab both yielded 4.8 copies/ng DNA and 5.3 × 104 copies/ng DNA, respectively. Post-mission saliva samples continued to have a high infectious HSV-1 load (1.67 × 107 copies/ng DNA). HSV-1 from both rash and saliva samples had 99.9% genotype homology. Additional physiological monitoring, including stress biomarkers (cortisol, dehydroepiandrosterone (DHEA), and salivary amylase), immune markers (adaptive regulatory and inflammatory plasma cytokines), and biochemical profile markers, including vitamin/mineral status and bone metabolism, are also presented for this case. These data highlight an atypical presentation of HSV-1 during spaceflight and underscore the importance of viral screening during clinical evaluations of in-flight dermatitis to determine viral etiology and guide treatment.


Assuntos
Dermatite , Infecções por Vírus Epstein-Barr , Exantema , Herpes Simples , Infecções por Herpesviridae , Herpesvirus Humano 1 , Voo Espacial , Vírus não Classificados , Vírus , Biomarcadores , DNA Viral/análise , Herpes Simples/etiologia , Herpesvirus Humano 3/fisiologia , Herpesvirus Humano 4 , Humanos , Ativação Viral
3.
PLoS Pathog ; 17(3): e1009441, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33750985

RESUMO

Infection with herpes simplex virus 1 (HSV-1) occurs in over half the global population, causing recurrent orofacial and/or genital lesions. Individual strains of HSV-1 demonstrate differences in neurovirulence in vivo, suggesting that viral genetic differences may impact phenotype. Here differentiated SH-SY5Y human neuronal cells were infected with one of three HSV-1 strains known to differ in neurovirulence in vivo. Host and viral RNA were sequenced simultaneously, revealing strain-specific differences in both viral and host transcription in infected neurons. Neuronal morphology and immunofluorescence data highlight the pathological changes in neuronal cytoarchitecture induced by HSV-1 infection, which may reflect host transcriptional changes in pathways associated with adherens junctions, integrin signaling, and others. Comparison of viral protein levels in neurons and epithelial cells demonstrated that a number of differences were neuron-specific, suggesting that strain-to-strain variations in host and virus transcription are cell type-dependent. Together, these data demonstrate the importance of studying virus strain- and cell-type-specific factors that may contribute to neurovirulence in vivo, and highlight the specificity of HSV-1-host interactions.


Assuntos
Herpes Simples/virologia , Herpesvirus Humano 1/genética , Interações Hospedeiro-Patógeno/genética , Neurônios/virologia , Transcriptoma/genética , Humanos
4.
Microbiol Resour Announc ; 10(12)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33766904

RESUMO

Herpes simplex virus 1 (HSV-1) strain McKrae was isolated in 1965 and has been utilized by many laboratories. Three HSV-1 strain McKrae stocks have been sequenced previously, revealing discrepancies in key genes. We sequenced the genome of HSV-1 strain McKrae from the laboratory of James M. Hill to better understand the genetic differences between isolates.

5.
Virus Evol ; 6(1): veaa013, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32296542

RESUMO

The large dsDNA virus herpes simplex virus 1 (HSV-1) is considered to be genetically stable, yet it can rapidly evolve in response to strong selective pressures such as antiviral treatment. Deep sequencing has revealed that clinical and laboratory isolates of this virus exist as populations that contain a mixture of minor alleles or variants, similar to many RNA viruses. The classic virology approach of plaque purifying virus creates a genetically homogenous population, but it is not clear how closely this represents the mixed virus populations found in nature. We sought to study the evolution of mixed versus highly purified HSV-1 populations in controlled cell culture conditions, to examine the impact of this genetic diversity on evolution. We found that a mixed population of HSV-1 acquired more genetic diversity and underwent a more dramatic phenotypic shift than a plaque-purified population, producing a viral population that was almost entirely syncytial after just ten passages. At the genomic level, adaptation and genetic diversification occurred at the level of minor alleles or variants in the viral population. Certain genetic variants in the mixed viral population appeared to be positively selected in cell culture, and this shift was also observed in clinical samples during their first passages in vitro. In contrast, the plaque-purified viral population did not appear to change substantially in phenotype or overall quantity of minor allele diversity. These data indicate that HSV-1 is capable of evolving rapidly in a given environment, and that this evolution is facilitated by diversity in the viral population.

6.
Artigo em Inglês | MEDLINE | ID: mdl-31582464

RESUMO

Here we present a personalized viral genomics approach to investigating a rare case of perinatal herpes simplex virus 1 (HSV-1) transmission that ended in death of both mother and neonate. We sought to determine whether the virus involved in this rare case had any unusual features that may have contributed to the dire patient outcome. A pregnant woman with negative HerpeSelect antibody test underwent cesarean section at 30 wk gestation and died the same day. The premature newborn died 5 d later. Both individuals were found postmortem to have positive blood HSV-1 PCR tests. Using oligonucleotide enrichment and deep sequencing, we determined that viral transmission from mother to infant was nearly perfect at the consensus genome level. At the virus population level, 77% of minor variants (MVs) in the mother's blood also appeared on the neonate's skin, of which more than half were disseminated into the neonate's blood. We also detected nonmaternal MVs that arose de novo in the neonate's viral populations. Of note, one de novo MV in the neonate's skin virus induced a nonsynonymous mutation in the UL6 protein, which is a component of the portal that allows DNA entry into new progeny capsids. This case suggests that perinatal viremic HSV-1 transmission includes the majority of genetic diversity from the maternal virus population and that new, nonsynonymous mutations can occur after relatively few rounds of replication. This report expands our understanding of viral transmission in humans and may lead to improved diagnostic strategies for neonatal HSV-1 acquisition.


Assuntos
Herpes Simples/mortalidade , Herpesvirus Humano 1/genética , Medicina de Precisão/métodos , Cesárea , Encefalite Viral/genética , Feminino , Genoma Viral/genética , Genômica , Humanos , Recém-Nascido , Transmissão Vertical de Doenças Infecciosas , Morte Materna/etiologia , Morte Perinatal/etiologia , Gravidez , Pele/virologia , Proteínas Virais/genética
7.
mSphere ; 4(1)2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30814317

RESUMO

More than 14,000 neonates are infected with herpes simplex virus (HSV) annually. Approximately half display manifestations limited to the skin, eyes, or mouth (SEM disease). The rest develop invasive infections that spread to the central nervous system (CNS disease or encephalitis) or throughout the infected neonate (disseminated disease). Invasive HSV disease is associated with significant morbidity and mortality, but the viral and host factors that predispose neonates to these forms are unknown. To define viral diversity within the infected neonatal population, we evaluated 10 HSV-2 isolates from newborns with a range of clinical presentations. To assess viral fitness independently of host immune factors, we measured viral growth characteristics in cultured cells and found diverse in vitro phenotypes. Isolates from neonates with CNS disease were associated with larger plaque size and enhanced spread, with the isolates from cerebrospinal fluid (CSF) exhibiting the most robust growth. We sequenced complete viral genomes of all 10 neonatal viruses, providing new insights into HSV-2 genomic diversity in this clinical setting. We found extensive interhost and intrahost genomic diversity throughout the viral genome, including amino acid differences in more than 90% of the viral proteome. The genes encoding glycoprotein G (gG; US4), glycoprotein I (gI; US7), and glycoprotein K (gK; UL53) and viral proteins UL8, UL20, UL24, and US2 contained variants that were found in association with CNS isolates. Many of these viral proteins are known to contribute to cell spread and neurovirulence in mouse models of CNS disease. This report represents the first application of comparative pathogen genomics to neonatal HSV disease.IMPORTANCE Herpes simplex virus (HSV) causes invasive disease in half of infected neonates, resulting in significant mortality and permanent cognitive morbidity. The factors that contribute to invasive disease are not understood. This study revealed diversity among HSV isolates from infected neonates and detected the first associations between viral genetic variations and clinical disease manifestations. We found that viruses isolated from newborns with encephalitis showed enhanced spread in culture. These viruses contained protein-coding variations not found in viruses causing noninvasive disease. Many of these variations were found in proteins known to impact neurovirulence and viral spread between cells. This work advances our understanding of HSV diversity in the neonatal population and how it may impact disease outcome.


Assuntos
Variação Genética , Herpes Simples/virologia , Herpesvirus Humano 2/genética , Complicações Infecciosas na Gravidez/virologia , Linhagem Celular , Encefalite Viral/virologia , Feminino , Genoma Viral , Genômica , Genótipo , Idade Gestacional , Herpes Simples/complicações , Herpesvirus Humano 1/genética , Herpesvirus Humano 2/isolamento & purificação , Herpesvirus Humano 2/patogenicidade , Humanos , Recém-Nascido , Masculino , Fenótipo , Gravidez , Proteínas Virais/genética
8.
J Virol ; 93(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30760568

RESUMO

A majority of adults in Finland are seropositive carriers of herpes simplex viruses (HSV). Infection occurs at epithelial or mucosal surfaces, after which virions enter innervating nerve endings, eventually establishing lifelong infection in neurons of the sensory or autonomic nervous system. Recent data have highlighted the genetic diversity of HSV-1 strains and demonstrated apparent geographic patterns in strain similarity. Though multiple HSV-1 genomes have been sequenced from Europe to date, there is a lack of sequenced genomes from the Nordic countries. Finland's history includes at least two major waves of human migration, suggesting the potential for diverse viruses to persist in the population. Here, we used HSV-1 clinical isolates from Finland to test the relationship between viral phylogeny, genetic variation, and phenotypic characteristics. We found that Finnish HSV-1 isolates separated into two distinct phylogenetic groups, potentially reflecting historical waves of human (and viral) migration into Finland. Each HSV-1 isolate harbored a distinct set of phenotypes in cell culture, including differences in the amount of virus production, extracellular virus release, and cell-type-specific fitness. Importantly, the phylogenetic clusters were not predictive of any detectable pattern in phenotypic differences, demonstrating that whole-genome relatedness is not a proxy for overall viral phenotype. Instead, we highlight specific gene-level differences that may contribute to observed phenotypic differences, and we note that strains from different phylogenetic groups can contain the same genetic variations.IMPORTANCE Herpes simplex viruses (HSV) infect a majority of adults. Recent data have highlighted the genetic diversity of HSV-1 strains and demonstrated apparent genomic relatedness between strains from the same geographic regions. We used HSV-1 clinical isolates from Finland to test the relationship between viral genomic and geographic relationships, differences in specific genes, and characteristics of viral infection. We found that viral isolates from Finland separated into two distinct groups of genomic and geographic relatedness, potentially reflecting historical patterns of human and viral migration into Finland. These Finnish HSV-1 isolates had distinct infection characteristics in multiple cell types tested, which were specific to each isolate and did not group according to genomic and geographic relatedness. This demonstrates that HSV-1 strain differences in specific characteristics of infection are set by a combination of host cell type and specific viral gene-level differences.


Assuntos
Variação Genética , Genoma Viral , Herpes Simples/genética , Herpesvirus Humano 1/genética , Filogenia , Animais , Chlorocebus aethiops , Feminino , Finlândia , Herpesvirus Humano 1/isolamento & purificação , Humanos , Masculino , Células Vero , Sequenciamento Completo do Genoma
9.
J Infect Dis ; 218(4): 595-605, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-29920588

RESUMO

Here we present genomic and in vitro analyses of temporally separated episodes of herpes simplex virus type 1 (HSV-1) shedding by an HSV-1-seropositive and human immunodeficiency virus (HIV)/HSV-2-seronegative individual who has frequent recurrences of genital HSV-1. Using oligonucleotide enrichment, we compared viral genomes from uncultured swab specimens collected on different days and from distinct genital sites. We found that viral genomes from 7 swab specimens and 3 cultured specimens collected over a 4-month period from the same individual were 98.5% identical. We observed a >2-fold difference in the number of minority variants between swab specimens from lesions, swab specimens from nonlesion sites, and cultured specimens. This virus appeared distinct in its phylogenetic relationship to other strains, and it contained novel coding variations in 21 viral proteins. This included a truncation in the UL11 tegument protein, which is involved in viral egress and spread. Normal immune responses were identified, suggesting that unique viral genomic features may contribute to the recurrent genital infection that this participant experiences.


Assuntos
Variação Genética , Genitália Feminina/virologia , Herpes Genital/virologia , Herpesvirus Humano 1/classificação , Herpesvirus Humano 1/genética , Adulto , Feminino , Genótipo , Infecções por HIV/complicações , Herpesvirus Humano 1/isolamento & purificação , Humanos , Estudos Longitudinais , Filogenia , Recidiva
10.
J Virol ; 92(1)2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29046445

RESUMO

Until fairly recently, genome-wide evolutionary dynamics and within-host diversity were more commonly examined in the context of small viruses than in the context of large double-stranded DNA viruses such as herpesviruses. The high mutation rates and more compact genomes of RNA viruses have inspired the investigation of population dynamics for these species, and recent data now suggest that herpesviruses might also be considered candidates for population modeling. High-throughput sequencing (HTS) and bioinformatics have expanded our understanding of herpesviruses through genome-wide comparisons of sequence diversity, recombination, allele frequency, and selective pressures. Here we discuss recent data on the mechanisms that generate herpesvirus genomic diversity and underlie the evolution of these virus families. We focus on human herpesviruses, with key insights drawn from veterinary herpesviruses and other large DNA virus families. We consider the impacts of cell culture on herpesvirus genomes and how to accurately describe the viral populations under study. The need for a strong foundation of high-quality genomes is also discussed, since it underlies all secondary genomic analyses such as RNA sequencing (RNA-Seq), chromatin immunoprecipitation, and ribosome profiling. Areas where we foresee future progress, such as the linking of viral genetic differences to phenotypic or clinical outcomes, are highlighted as well.


Assuntos
Evolução Molecular , Variação Genética , Genoma Viral , Herpesviridae/genética , Biologia Computacional , DNA Viral/genética , Genômica , Herpesviridae/patogenicidade , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Filogenia , Recombinação Genética , Análise de Sequência de RNA
11.
Sci Rep ; 7(1): 13666, 2017 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-29057909

RESUMO

High throughout sequencing has provided an unprecedented view of the circulating diversity of all classes of human herpesviruses. For herpes simplex virus 1 (HSV-1), we and others have previously published data demonstrating sequence diversity between hosts. However the extent of variation during transmission events, or in one host over years of chronic infection, remain unknown. Here we present an initial example of full characterization of viruses isolated from a father to son transmission event. The likely occasion of transmission occurred 17 years before the strains were isolated, enabling a first view of the degree of virus conservation after decades of recurrences, including transmission and adaptation to a new host. We have characterized the pathogenicity of these strains in a mouse ocular model of infection, and sequenced the full viral genomes. Surprisingly, we find that these two viruses have preserved their phenotype and genotype nearly perfectly during inferred transmission from father to son, and during nearly two decades of episodes of recurrent disease in each human host. Given the close genetic relationship of these two hosts, it remains to be seen whether or not this conservation of sequence will occur during non-familial transmission events.


Assuntos
Genoma Viral , Herpesvirus Humano 1/genética , Ceratite Herpética/transmissão , Ceratite Herpética/virologia , Animais , Evolução Molecular , Herpesvirus Humano 1/patogenicidade , Humanos , Transmissão Vertical de Doenças Infecciosas , Ceratite Herpética/fisiopatologia , Masculino , Camundongos , Pessoa de Meia-Idade , Fenótipo , Adulto Jovem
12.
mSphere ; 1(5)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27747299

RESUMO

The intensification of the poultry industry over the last 60 years facilitated the evolution of increased virulence and vaccine breaks in Marek's disease virus (MDV-1). Full-genome sequences are essential for understanding why and how this evolution occurred, but what is known about genome-wide variation in MDV comes from laboratory culture. To rectify this, we developed methods for obtaining high-quality genome sequences directly from field samples without the need for sequence-based enrichment strategies prior to sequencing. We applied this to the first characterization of MDV-1 genomes from the field, without prior culture. These viruses were collected from vaccinated hosts that acquired naturally circulating field strains of MDV-1, in the absence of a disease outbreak. This reflects the current issue afflicting the poultry industry, where virulent field strains continue to circulate despite vaccination and can remain undetected due to the lack of overt disease symptoms. We found that viral genomes from adjacent field sites had high levels of overall DNA identity, and despite strong evidence of purifying selection, had coding variations in proteins associated with virulence and manipulation of host immunity. Our methods empower ecological field surveillance, make it possible to determine the basis of viral virulence and vaccine breaks, and can be used to obtain full genomes from clinical samples of other large DNA viruses, known and unknown. IMPORTANCE Despite both clinical and laboratory data that show increased virulence in field isolates of MDV-1 over the last half century, we do not yet understand the genetic basis of its pathogenicity. Our knowledge of genome-wide variation between strains of this virus comes exclusively from isolates that have been cultured in the laboratory. MDV-1 isolates tend to lose virulence during repeated cycles of replication in the laboratory, raising concerns about the ability of cultured isolates to accurately reflect virus in the field. The ability to directly sequence and compare field isolates of this virus is critical to understanding the genetic basis of rising virulence in the wild. Our approaches remove the prior requirement for cell culture and allow direct measurement of viral genomic variation within and between hosts, over time, and during adaptation to changing conditions.

13.
Virology ; 492: 179-86, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26950505

RESUMO

Herpes simplex virus 1 (HSV-1) is a widespread global pathogen, of which the strain KOS is one of the most extensively studied. Previous sequence studies revealed that KOS does not cluster with other strains of North American geographic origin, but instead clustered with Asian strains. We sequenced a historical isolate of the original KOS strain, called KOS63, along with a separately isolated strain attributed to the same source individual, termed KOS79. Genomic analyses revealed that KOS63 closely resembled other recently sequenced isolates of KOS and was of Asian origin, but that KOS79 was a genetically unrelated strain that clustered in genetic distance analyses with HSV-1 strains of North American/European origin. These data suggest that the human source of KOS63 and KOS79 could have been infected with two genetically unrelated strains of disparate geographic origins. A PCR RFLP test was developed for rapid identification of these strains.


Assuntos
DNA Viral/genética , Genética Forense , Genoma Viral , Herpesvirus Humano 1/genética , Filogenia , Adulto , Ásia , Linhagem Celular , Europa (Continente) , Feto , Fibroblastos/virologia , Variação Genética , Herpes Simples/virologia , Herpesvirus Humano 1/classificação , Herpesvirus Humano 1/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , América do Norte , Filogeografia
14.
Gigascience ; 4: 19, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25918639

RESUMO

BACKGROUND: Advances in next generation sequencing make it possible to obtain high-coverage sequence data for large numbers of viral strains in a short time. However, since most bioinformatics tools are developed for command line use, the selection and accessibility of computational tools for genome assembly and variation analysis limits the ability of individual labs to perform further bioinformatics analysis. FINDINGS: We have developed a multi-step viral genome assembly pipeline named VirAmp, which combines existing tools and techniques and presents them to end users via a web-enabled Galaxy interface. Our pipeline allows users to assemble, analyze, and interpret high coverage viral sequencing data with an ease and efficiency that was not possible previously. Our software makes a large number of genome assembly and related tools available to life scientists and automates the currently recommended best practices into a single, easy to use interface. We tested our pipeline with three different datasets from human herpes simplex virus (HSV). CONCLUSIONS: VirAmp provides a user-friendly interface and a complete pipeline for viral genome analysis. We make our software available via an Amazon Elastic Cloud disk image that can be easily launched by anyone with an Amazon web service account. A fully functional demonstration instance of our system can be found at http://viramp.com/. We also maintain detailed documentation on each tool and methodology at http://docs.viramp.com.


Assuntos
Genoma Viral , Simplexvirus/genética , Software , Biologia Computacional/métodos , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA