Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38953794

RESUMO

BACKGROUND: Oral cancer is a serious health issue in both the developing and developed worlds, and it is one of the most common forms of cancer of the head and neck. In accordance with the 2017 World Health Organization classification, oral cancer can affect any part of the mouth, including the buccal mucosa, the front two-thirds of the tongue, the lip, the palate, the vestibule, the alveolus, the floor of the mouth, and the gingivae. Hematology and electrolyte balance have been proposed as tumor indicators and paths into cancer's genesis. Examining the patient's blood count and electrolyte levels in order to better understand their oral cancer. METHODS: Electrolyte abnormalities are common in cancer patients and may be caused by the disease itself or by treatment. Hyponatremia is the most frequent electrolyte problem in cancer patients, and it is typically caused by the syndrome of improper ADH secretion. Although electrolyte problems are associated with a worse prognosis for cancer patients, timely and effective therapy has the potential to enhance both short- and long-term results and quality of life. Hematological tests on patients with oral cancer, including differential cell count, white blood cell count, and hemoglobin level. RESULTS: Compared to healthy controls, oral cancer patients show statistically significant differences in a number of biochemical parameters, including electrolytes (sodium, P<0.05; potassium, P=0.89; chloride, P<0.05); differential count (neutrophils, P<0.05; basophils, P<0.05). A significant risk factor for cancer patients is an electrolyte imbalance, which has been linked to inappropriate anti-diabetic hormone release. CONCLUSIONS: Clinicians will find these shifts in electrolytic level helpful in diagnosing and tracking oral cancer. Potentially malignant oral disorders and Oral squamous cell carcinoma may be better predicted using a combination of TLC, neutrophil, and lymphocyte counts, as shown in this study.

2.
J Pharm Bioallied Sci ; 16(Suppl 2): S1299-S1303, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38882825

RESUMO

Aim: The metabolism of glucose is carefully regulated by several chemical elements and plays a critical part in preserving cellular energy balance. Our study investigates possible connections between the essential proteins CYTIP, C1QL3, and CYBB, which are involved in the metabolism of glucose, and pelargonidin, a naturally occurring plant chemical. The underlying mechanisms of pelargonidin's anti-diabetic effects are still unknown. Materials and Methods: We examine the binding affinities and possible binding sites between pelargonidin and C1QL3/CYBB AND CYTIP using molecular docking simulations. The results demonstrate favorable docking scores and potential binding sites, suggesting the formation of stable complexes between pelargonidin and the target proteins. Results: This finding means that pelargonidin may modulate the function of C1QL3 and CYBB, CYTIP consequently influencing glucose metabolism. Conclusion: This study provides a foundation for future experimental investigations to validate the predicted interactions and explore the mechanisms through which pelargonidin affects glucose metabolism. Understanding these molecular interactions could lead to the development of new therapeutic strategies for glucose metabolism and its related disorders.

3.
J Pharm Bioallied Sci ; 16(Suppl 2): S1295-S1298, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38882881

RESUMO

Aim: Mitochondriogenesis refers to the process of creating and maintaining mitochondria, which plays an essential role in cellular metabolism. Mitochondrial processes such as energy generation, the response to oxidative stress, and cell death are all tightly regulated by enzymes. The flavonoid molecule malvidin-3-glucoside (M3G), which may be found in a wide variety of fruits and vegetables, has been shown to improve mitochondrial activity. However, the precise enzymes that mediate M3G's effect on mitochondriogenesis are yet unknown. Method: Here, we used in silico molecular modeling tools to look at how enzymes contribute to mitochondriogenesis after M3G administration. We used computational methods to discover candidate target enzymes known to interact with M3G and play important roles in mitochondrial physiology. Molecular docking was conducted to measure the binding affinity and stability of the M3G-enzyme complexes. The found enzymes' structural and functional features were analyzed using bioinformatics techniques, and the predicted functional implications of their interaction with M3G were formulated. Result: Our goal in doing these studies was to understand better how M3G regulates mitochondriogenesis by the action of altering SIRT-1, AMPK, and PGC-1α via M3G. Conclusion: In sum, our findings provide light on the molecular pathways by which M3G influences mitochondriogenesis. Furthermore, experimental validation of the discovered enzymes and their interactions with M3G may aid in the development of therapeutic approaches to improve mitochondrial function and cellular health.

5.
Food Nutr Res ; 682024.
Artigo em Inglês | MEDLINE | ID: mdl-38571915

RESUMO

Background: Nimbolide, a bioactive compound derived from the neem tree, has garnered attention as a potential breakthrough in the prevention and treatment of chronic diseases. Recent updates in research highlight its multifaceted pharmacological properties, demonstrating anti-inflammatory, antioxidant, and anticancer effects. With a rich history in traditional medicine, nimbolide efficacy in addressing the molecular complexities of conditions such as cardiovascular diseases, diabetes, and cancer positions it as a promising candidate for further exploration. As studies progress, the recent update underscores the growing optimism surrounding nimbolide as a valuable tool in the ongoing pursuit of innovative therapeutic strategies for chronic diseases. Methods: The comprehensive search of the literature was done until September 2020 on the MEDLINE, Embase, Scopus and Web of Knowledge databases. Results: Most studies have shown the Nimbolide is one of the most potent limonoids derived from the flowers and leaves of neem (Azadirachta indica), which is widely used to treat a variety of human diseases. In chronic diseases, nimbolide reported to modulate the key signaling pathways, such as Mitogen-activated protein kinases (MAPKs), Wingless-related integration site-ß (Wnt-ß)/catenin, NF-κB, PI3K/AKT, and signaling molecules, such as transforming growth factor (TGF-ß), Matrix metalloproteinases (MMPs), Vascular Endothelial Growth Factor (VEGF), inflammatory cytokines, and epithelial-mesenchymal transition (EMT) proteins. Nimbolide has anti-inflammatory, anti-microbial, and anti-cancer properties, which make it an intriguing compound for research. Nimbolide demonstrated therapeutic potential for osteoarthritis, rheumatoid arthritis, cardiovascular, inflammation and cancer. Conclusion: The current review mainly focused on understanding the molecular mechanisms underlying the therapecutic effects of nimbolide in chronic diseases.

6.
Int J Biol Macromol ; 253(Pt 4): 126715, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37673136

RESUMO

For the potential health benefits and nutritional value, polyphenols are one of the secondary metabolites of plants that have received extensive research. It has anti-inflammatory and cytotoxicity-reducing properties in addition to a high antioxidant content. Macromolecular polyphenols and polysaccharides are biologically active natural polymers with antioxidant and anti-inflammatory potential. Arsenic is an ecologically toxic metalloid. Arsenic in drinking water is the most common way people come into contact with this metalloid. While arsenic is known to cause cancer, it is also used to treat acute promyelocytic leukemia (APL). The treatment's effectiveness is hampered by the adverse effects it can cause on the body. Oxidative stress, inflammation, and the inability to regulate cell death cause the most adverse effects. Polyphenols and other macromolecules like polysaccharides act as neuroprotectants by mitigating free radical damage, inhibiting nitric oxide (NO) production, lowering A42 fibril formation, boosting antioxidant levels, and controlling apoptosis and inflammation. To prevent the harmful effects of toxins, polyphenols and pectin lower oxidative stress, boost antioxidant levels, improve mitochondrial function, control apoptosis, and suppress inflammation. Therefore, it prevents damage to the heart, liver, kidneys, and reproductive system. This review aims to identify the effects of the polyphenols in conjugation with polysaccharides as an ameliorative strategy for arsenic-induced toxicity in various organs.


Assuntos
Intoxicação por Arsênico , Arsênio , Selênio , Humanos , Antioxidantes/farmacologia , Selênio/farmacologia , Arsênio/farmacologia , Cobre/farmacologia , Intoxicação por Arsênico/prevenção & controle , Polifenóis/farmacologia , Zinco/farmacologia , Estresse Oxidativo , Inflamação , Pectinas/farmacologia , Anti-Inflamatórios/farmacologia
7.
Bioinformation ; 19(1): 85-87, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37720287

RESUMO

Diabetes is characterized by elevated blood sugar and insulin resistance. In poorly controlled or uncontrolled diabetes, persistent hyperglycemia causes oral and systemic problems. Therefore, it is of interest to evaluate biochemical indicators for oral health and diabetes using a fully automatic biochemistry analyzer which separates patient serum from blood samples. Data shows that diabetic oral complex patients showed high RBS, HbA1c, FBS, and PBSS. Thus, dental condition is linked to diabetes.

8.
J Biochem Mol Toxicol ; 37(12): e23502, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37578200

RESUMO

Alcohol consumption has been linked to numerous negative health outcomes although it has some beneficial effects on moderate dosages, the most severe of which being alcohol-induced hepatitis. The number of people dying from this liver illness has been shown to climb steadily over time, and its prevalence has been increasing. Researchers have found that alcohol consumption primarily affects the brain, leading to a wide range of neurological and psychological diseases. High-alcohol-consumption addicts not only experienced seizures, but also ataxia, aggression, social anxiety, and variceal hemorrhage that ultimately resulted in death, ascites, and schizophrenia. Drugs treating this liver condition are limited and can cause serious side effects like depression. Serine-threonine kinases, cAMP protein kinases, protein kinase C, ERK, RACK 1, Homer 2, and more have all been observed to have their signaling pathways disrupted by alcohol, and alcohol has also been linked to epigenetic changes. In addition, alcohol consumption induces dysbiosis by changing the composition of the microbiome found in the gastrointestinal tract. Although more studies are needed, those that have been done suggest that probiotics aid in keeping the various microbiota concentrations stable. It has been argued that reducing one's alcohol intake may seem less harmful because excessive drinking is a lifestyle disorder.


Assuntos
Varizes Esofágicas e Gástricas , Microbioma Gastrointestinal , Hepatopatias Alcoólicas , Humanos , Corpo Humano , Microbioma Gastrointestinal/fisiologia , Hemorragia Gastrointestinal
9.
Genes Dis ; 10(3): 960-989, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37396553

RESUMO

Continuous revision of the histologic and stage-wise classification of lung cancer by the World Health Organization (WHO) provides the foundation for therapeutic advances by promoting molecular targeted and immunotherapies and ensuring accurate diagnosis. Cancer epidemiologic data provide helpful information for cancer prevention, diagnosis, and management, supporting health-care interventions. Global cancer mortality projections from 2016 to 2060 show that cancer will overtake ischemic heart diseases (IHD) as the leading cause of death (18.9 million) immediately after 2030, surpassing non-small cell lung cancer (NSCLC), which accounts for 85 percent of lung cancers. The clinical stage at the diagnosis is the main prognostic factor in NSCLC therapies. Advanced early diagnostic methods are essential as the initial stages of cancer show reduced mortality compared to the advanced stages. Sophisticated approaches to proper histological classification and NSCLC management have improved clinical efficiency. Although immune checkpoint inhibitors (ICIs) and targeted molecular therapies have refined the therapeutic management of late-stage NSCLC, the specificity and sensitivity of cancer biomarkers should be improved by focusing on prospective studies, followed by their use as therapeutic tools. The liquid biopsy candidates such as circulating tumor cells (CTCs), circulating cell-free tumor DNA (cfDNA), tumor educated platelets (TEP), and extracellular vesicles (EVs) possess cancer-derived biomolecules and aid in tracing: driver mutations leading to cancer, acquired resistance caused by various generations of therapeutic agents, refractory disease, prognosis, and surveillance.

10.
Life Sci ; 328: 121913, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37414140

RESUMO

Epicardial adipose tissue (EAT) has morphological and physiological contiguity with the myocardium and coronary arteries, making it a visceral fat deposit with some unique properties. Under normal circumstances, EAT exhibits biochemical, mechanical, and thermogenic cardioprotective characteristics. Under clinical processes, epicardial fat can directly impact the heart and coronary arteries by secreting proinflammatory cytokines via vasocrine or paracrine mechanisms. It is still not apparent what factors affect this equilibrium. Returning epicardial fat to its physiological purpose may be possible by enhanced local vascularization, weight loss, and focused pharmacological therapies. This review centers on EAT's developing physiological and pathophysiological dimensions and its various and pioneering clinical utilities.


Assuntos
Tecido Adiposo , Pericárdio , Tecido Adiposo/fisiologia , Miocárdio , Citocinas , Vasos Coronários
11.
Med Oncol ; 40(8): 220, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402029

RESUMO

Regardless of the significant progress made in surgical techniques and adjuvant therapies, brain tumors are a major contributor to cancer-related morbidity and mortality in both pediatric and adult populations. Gliomas represent a significant proportion of cerebral neoplasms, exhibiting diverse levels of malignancy. The etiology and mechanisms of resistance of this malignancy are inadequately comprehended, and the optimization of patient diagnosis and prognosis is a challenge due to the diversity of the disease and the restricted availability of therapeutic options. Metabolomics refers to the comprehensive analysis of endogenous and exogenous small molecules, both in a targeted and untargeted manner, that enables the characterization of an individual's phenotype and offers valuable insights into cellular activity, particularly in the context of cancer biology, including brain tumor biology. Metabolomics has garnered attention in current years due to its potential to facilitate comprehension of the dynamic spatiotemporal regulatory network of enzymes and metabolites that enables cancer cells to adapt to their environment and foster the development of tumors. Metabolic changes are widely acknowledged as a significant characteristic for tracking the advancement of diseases, treatment efficacy, and identifying novel molecular targets for successful medical management. Metabolomics has emerged as an exciting area for personalized medicine and drug discovery, utilizing advanced analytical techniques such as nuclear magnetic resonance spectroscopy (MRS) and mass spectrometry (MS) to achieve high-throughput analysis. This review examines and highlights the latest developments in MRS, MS, and other technologies in studying human brain tumor metabolomics.


Assuntos
Neoplasias Encefálicas , Glioma , Adulto , Humanos , Criança , Metaboloma , Metabolômica/métodos , Espectrometria de Massas/métodos
12.
Med Oncol ; 40(8): 212, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37358816

RESUMO

Cancer and related diseases are the second leading cause of death worldwide. The human papillomavirus (HPV) is an infectious agent that can be spread mainly through sexual contact and has been linked to several malignancies in both sexes. HPV is linked to almost all cases of cervical cancer. It is also linked to many head and neck cancer (HNC) cases, especially oropharyngeal cancer. Also, some HPV-related cancers, like vaginal, vulvar, penile, and anal cancers, are related to the anogenital area. Over the past few decades, testing for and preventing cervical cancer has improved, but anogenital cancers are still harder to confirm. HPV16 and HPV18 have been extensively researched due to their significant carcinogenic potential. The products of two early viral genes, E6 and E7, have been identified as playing crucial roles in cellular transformation, as emphasized by biological investigations. The complete characterization of numerous mechanisms employed by E6 and E7 in undermining the regulation of essential cellular processes has significantly contributed to our comprehension of HPV-induced cancer progression. This review focuses on the various types of cancers caused by HPV infection and also sheds light on the signaling cascades involved in the same.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Masculino , Feminino , Humanos , Neoplasias do Colo do Útero/epidemiologia , Papillomavirus Humano , Infecções por Papillomavirus/complicações , Transformação Celular Neoplásica , Proteínas E7 de Papillomavirus/genética
14.
Biomed Pharmacother ; 163: 114832, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37150032

RESUMO

Several proteins and peptides have therapeutic potential and can be used for cancer therapy. By binding to cell surface receptors and other indicators uniquely linked with or overexpressed on tumors compared to healthy tissue, protein biologics enhance the active targeting of cancer cells, as opposed to the passive targeting of cells by conventional small-molecule chemotherapeutics. This study focuses on peptide medications that exist to slow or stop tumor growth and the spread of cancer, demonstrating the therapeutic potential of peptides in cancer treatment. As an alternative to standard chemotherapy, peptides that selectively kill cancer cells while sparing healthy tissue are developing. A mountain of clinical evidence supports the efficacy of peptide-based cancer vaccines. Since a single treatment technique may not be sufficient to produce favourable results in the fight against cancer, combination therapy is emerging as an effective option to generate synergistic benefits. One example of this new area is the use of anticancer peptides in combination with nonpeptidic cytotoxic drugs or the combination of immunotherapy with conventional therapies like radiation and chemotherapy. This review focuses on the different natural and synthetic peptides obtained and researched. Discoveries, manufacture, and modifications of peptide drugs, as well as their contemporary applications, are summarized in this review. We also discuss the benefits and difficulties of potential advances in therapeutic peptides.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Peptídeos/uso terapêutico , Proteínas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Imunoterapia/métodos
15.
Med Oncol ; 40(5): 149, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37060468

RESUMO

Cervical cancer (CC) is the fourth leading cause of cancer death (~ 324,000 deaths annually) among women internationally, with 85% of these deaths reported in developing regions, particularly sub-Saharan Africa and Southeast Asia. Human papillomavirus (HPV) is considered the major driver of CC, and with the availability of the prophylactic vaccine, HPV-associated CC is expected to be eliminated soon. However, female patients with advanced-stage cervical cancer demonstrated a high recurrence rate (50-70%) within two years of completing radiochemotherapy. Currently, 90% of failures in chemotherapy are during the invasion and metastasis of cancers related to drug resistance. Although molecular target therapies have shown promising results in the lab, they have had little success in patients due to the tumor heterogeneity fueling resistance to these therapies and bypass the targeted signaling pathway. The last two decades have seen the emergence of immunotherapy, especially immune checkpoint blockade (ICB) therapies, as an effective treatment against metastatic tumors. Unfortunately, only a small subgroup of patients (< 20%) have benefited from this approach, reflecting disease heterogeneity and manifestation with primary or acquired resistance over time. Thus, understanding the mechanisms driving drug resistance in CC could significantly improve the quality of medical care for cancer patients and steer them to accurate, individualized treatment. The rise of artificial intelligence and machine learning has also been a pivotal factor in cancer drug discovery. With the advancement in such technology, cervical cancer screening and diagnosis are expected to become easier. This review will systematically discuss the different tumor-intrinsic and extrinsic mechanisms CC cells to adapt to resist current treatments and scheme novel strategies to overcome cancer drug resistance.


Assuntos
Antineoplásicos , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/tratamento farmacológico , Detecção Precoce de Câncer , Inteligência Artificial , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/terapia
16.
Nutrients ; 15(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36904106

RESUMO

Stroke is one of the main causes of mortality and disability, and it is due to be included in monetary implications on wellbeing frameworks around the world. Ischemic stroke is caused by interference in cerebral blood flow, leading to a deficit in the supply of oxygen to the affected region. It accounts for nearly 80-85% of all cases of stroke. Oxidative stress has a significant impact on the pathophysiologic cascade in brain damage leading to stroke. In the acute phase, oxidative stress mediates severe toxicity, and it initiates and contributes to late-stage apoptosis and inflammation. Oxidative stress conditions occur when the antioxidant defense in the body is unable to counteract the production and aggregation of reactive oxygen species (ROS). The previous literature has shown that phytochemicals and other natural products not only scavenge oxygen free radicals but also improve the expressions of cellular antioxidant enzymes and molecules. Consequently, these products protect against ROS-mediated cellular injury. This review aims to give an overview of the most relevant data reported in the literature on polyphenolic compounds, namely, gallic acid, resveratrol, quercetin, kaempferol, mangiferin, epigallocatechin, and pinocembrin, in terms of their antioxidant effects and potential protective activity against ischemic stroke.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Polifenóis/farmacologia , Neuroproteção , Acidente Vascular Cerebral/metabolismo , Estresse Oxidativo , Isquemia
17.
Vaccines (Basel) ; 11(3)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36992094

RESUMO

COVID-19 has become a significant public health concern that has catastrophic consequences for society. Some preliminary evidence suggests that the male reproductive system may be an infection target for SARS-CoV-2. SARS-CoV-2 may be transmitted sexually, according to preliminary research. Testicular cells exhibit a high level of the angiotensin-converting enzyme 2 (ACE2) receptor, which enhances the entry of the SARS-CoV-2 into host cells. Some instances of COVID-19 have been documented to exhibit hypogonadism during the acute stage. Furthermore, systemic inflammatory reactions triggered by SARS-CoV-2 infection may cause oxidative stress (OS), which has been shown to have profoundly deleterious consequences on testicular functioning. This work gives a clear picture of how COVID-19 may affect male reproductive systems and calls attention to the many unanswered questions about the mechanisms by which this virus can be linked to men's health and fertility.

18.
Vaccines (Basel) ; 11(2)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36851259

RESUMO

Lung cancer (LC) is considered as one of the leading causes of cancer-associated mortalities. Cancer cells' reprogrammed metabolism results in changes in metabolite concentrations, which can be utilized to identify a distinct metabolic pattern or fingerprint for cancer detection or diagnosis. By detecting different metabolic variations in the expression levels of LC patients, this will help and enhance early diagnosis methods as well as new treatment strategies. The majority of patients are identified at advanced stages after undergoing a number of surgical procedures or diagnostic testing, including the invasive procedures. This could be overcome by understanding the mechanism and function of differently regulated metabolites. Significant variations in the metabolites present in the different samples can be analyzed and used as early biomarkers. They could also be used to analyze the specific progression and type as well as stages of cancer type making it easier for the treatment process. The main aim of this review article is to focus on rewired metabolic pathways and the associated metabolite alterations that can be used as diagnostic and therapeutic targets in lung cancer diagnosis as well as treatment strategies.

19.
Vaccines (Basel) ; 11(2)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36851366

RESUMO

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19, a respiratory disorder. Various organ injuries have been reported in response to this virus, including kidney injury and, in particular, kidney tubular injury. It has been discovered that infection with the virus does not only cause new kidney disease but also increases treatment difficulty and mortality rates in people with kidney diseases. In individuals hospitalized with COVID-19, urinary metabolites from several metabolic pathways are used to distinguish between patients with acute kidney injury (AKI) and those without. This review summarizes the pathogenesis, pathophysiology, treatment strategies, and role of metabolomics in relation to AKI in COVID-19 patients. Metabolomics is likely to play a greater role in predicting outcomes for patients with kidney disease and COVID-19 with varying levels of severity in the near future as data on metabolic profiles expand rapidly. Here, we also discuss the correlation between COVID-19 and kidney diseases and the available metabolomics approaches.

20.
Metabolites ; 13(1)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36677054

RESUMO

As a complex endocrine and metabolic condition, polycystic ovarian syndrome (PCOS) affects women's reproductive health. These common symptoms include hirsutism, hyperandrogenism, ovulatory dysfunction, irregular menstruation, and infertility. No one knows what causes it or how to stop it yet. Alterations in gut microbiota composition and disruptions in secondary bile acid production appear to play a causative role in developing PCOS. PCOS pathophysiology and phenotypes are tightly related to both enteric and vaginal bacteria. Patients with PCOS exhibit changed microbiome compositions and decreased microbial diversity. Intestinal microorganisms also alter PCOS patient phenotypes by upregulating or downregulating hormone release, gut-brain mediators, and metabolite synthesis. The human body's gut microbiota, also known as the "second genome," can interact with the environment to improve metabolic and immunological function. Inflammation is connected to PCOS and may be caused by dysbiosis in the gut microbiome. This review sheds light on the recently discovered connections between gut microbiota and insulin resistance (IR) and the potential mechanisms of PCOS. This study also describes metabolomic studies to obtain a clear view of PCOS and ways to tackle it.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA