Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 803: 150078, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34525758

RESUMO

Influenza A viruses (IAVs) deposited by wild birds into the environment may lead to sporadic mortality events and economically costly outbreaks among domestic birds. There is a paucity of information, however, regarding the persistence of infectious IAVs within the environment following deposition. In this investigation, we assessed the persistence of 12 IAVs that were present in cloacal and/or oropharyngeal swabs of naturally infected ducks. Infectivity of these IAVs was monitored over approximately one year with each virus tested in five water types: (1) distilled water held in the lab at 4 °C and (2-5) filtered surface water from each of four Alaska sites and maintained in the field at ambient temperature. By evaluating infectivity of IAVs in ovo following sample retrieval at four successive time points, we observed declines in IAV infectivity through time. Many viruses persisted for extended periods, as evidenced by ≥25% of IAVs remaining infectious in replicate samples for each treatment type through three sampling time points (144-155 days post-sample collection) and two viruses remaining viable in a single replicate sample each when tested upon collection at a fourth time point (361-377 days post-sample collection). The estimated probability of persistence of infectious IAVs in all five water types was estimated to be between 0.25 and 0.75 during days 50-200 post-sample collection as inferred through Kaplan-Meier survival analysis. Our results provide evidence that IAVs may remain infectious for extended periods, up to or even exceeding one year, when maintained in surface waters under ambient temperatures. Therefore, wetlands may represent an important medium in which infectious IAVs may reside outside of a biotic reservoir.


Assuntos
Vírus da Influenza A , Influenza Aviária , Alaska/epidemiologia , Animais , Patos , Influenza Aviária/epidemiologia , Áreas Alagadas
2.
Sci Total Environ ; 764: 142906, 2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33115600

RESUMO

High latitude, boreal watersheds are nitrogen (N)-limited ecosystems that export large amounts of organic carbon (C). Key controls on C cycling in these environments are the biogeochemical processes affecting the N cycle. A study was conducted in Nome Creek, an upland tributary of the Yukon River, and two headwater tributaries to Nome Creek, to examine the relation between seasonal and transport-associated changes in C and N pools and N-cycling processes using laboratory bioassays of water and sediment samples and in-stream tracer tests. Dissolved organic nitrogen (DON) exceeded dissolved inorganic nitrogen (DIN) in Nome Creek except late in the summer season, with little variation in organic C:N ratios with time or transport distance. DIN was dominant in the headwater tributaries. Rates of organic N mineralization and denitrification in laboratory incubations were positively correlated with sediment organic C content, while nitrification rates differed greatly between two headwater tributaries with similar drainages. Additions of DIN or urea did not stimulate microbial activity. In-stream tracer tests with nitrate and urea indicated that uptake rates were slow relative to transport rates; simulated rates of uptake in stream storage zones were higher than rates assessed in the laboratory bioassays. In general, N-cycle processes were more active and had a greater overall impact in the headwater tributaries and were minimized in Nome Creek, the larger, higher velocity, transport-dominated stream. Given expectations of permafrost thaw and increased hydrologic cycling that will flush more inorganic N from headwater streams, our results suggest higher N loads from these systems in the future.


Assuntos
Nitrogênio , Rios , Alaska , Ecossistema , Nitrogênio/análise , Yukon
3.
Environ Sci Technol ; 50(7): 3649-57, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26967929

RESUMO

The fate and transport of inorganic nitrogen (N) is a critically important issue for human and aquatic ecosystem health because discharging N-contaminated groundwater can foul drinking water and cause algal blooms. Factors controlling N-processing were examined in sediments at three sites with contrasting hydrologic regimes at a lake on Cape Cod, MA. These factors included water chemistry, seepage rates and direction of groundwater flow, and the abundance and potential rates of activity of N-cycling microbial communities. Genes coding for denitrification, anaerobic ammonium oxidation (anammox), and nitrification were identified at all sites regardless of flow direction or groundwater dissolved oxygen concentrations. Flow direction was, however, a controlling factor in the potential for N-attenuation via denitrification in the sediments. Potential rates of denitrification varied from 6 to 4500 pmol N/g/h from the inflow to the outflow side of the lake, owing to fundamental differences in the supply of labile organic matter. The results of laboratory incubations suggested that when anoxia and limiting labile organic matter prevailed, the potential existed for concomitant anammox and denitrification. Where oxic lake water was downwelling, potential rates of nitrification at shallow depths were substantial (1640 pmol N/g/h). Rates of anammox, denitrification, and nitrification may be linked to rates of organic N-mineralization, serving to increase N-mobility and transport downgradient.


Assuntos
Sedimentos Geológicos/microbiologia , Lagos , Consórcios Microbianos/genética , Ciclo do Nitrogênio , Desnitrificação , Água Subterrânea , Hidrologia/métodos , Lagos/química , Massachusetts , Nitrificação
4.
Environ Sci Technol ; 45(7): 3096-101, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21384910

RESUMO

The effects of "trace" (environmentally relevant) concentrations of the antimicrobial agent sulfamethoxazole (SMX) on the growth, nitrate reduction activity, and bacterial composition of an enrichment culture prepared with groundwater from a pristine zone of a sandy drinking-water aquifer on Cape Cod, MA, were assessed by laboratory incubations. When the enrichments were grown under heterotrophic denitrifying conditions and exposed to SMX, noticeable differences from the control (no SMX) were observed. Exposure to SMX in concentrations as low as 0.005 µM delayed the initiation of cell growth by up to 1 day and decreased nitrate reduction potential (total amount of nitrate reduced after 19 days) by 47% (p=0.02). Exposure to 1 µM SMX, a concentration below those prescribed for clinical applications but higher than concentrations typically detected in aqueous environments, resulted in additional inhibitions: reduced growth rates (p=5×10(-6)), lower nitrate reduction rate potentials (p=0.01), and decreased overall representation of 16S rRNA gene sequences belonging to the genus Pseudomonas. The reduced abundance of Pseudomonas sequences in the libraries was replaced by sequences representing the genus Variovorax. Results of these growth and nitrate reduction experiments collectively suggest that subtherapeutic concentrations of SMX altered the composition of the enriched nitrate-reducing microcosms and inhibited nitrate reduction capabilities.


Assuntos
Anti-Infecciosos/toxicidade , Bactérias/efeitos dos fármacos , Água Doce/microbiologia , Sulfametoxazol/toxicidade , Poluentes Químicos da Água/toxicidade , Bactérias/genética , Bactérias/metabolismo , Sequência de Bases , Desnitrificação/efeitos dos fármacos , Relação Dose-Resposta a Droga , Dados de Sequência Molecular , Nitratos/metabolismo , Fixação de Nitrogênio/efeitos dos fármacos , Microbiologia da Água , Abastecimento de Água/análise
5.
Environ Sci Technol ; 43(7): 2348-54, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19452885

RESUMO

Water originating from coal-bed natural gas (CBNG) production wells typically contains ammonium and is often disposed via discharge to ephemeral channels. A study conducted in the Powder River Basin, Wyoming, documented downstream changes in CBNG water composition, emphasizing nitrogen-cycling processes and the fate of ammonium. Dissolved ammonium concentrations from 19 CBNG discharge points ranged from 95 to 527 microM. Within specific channels, ammonium concentrations decreased with transport distance, with subsequent increases in nitrite and nitrate concentrations. Removal efficiency, or uptake, oftotal dissolved inorganic nitrogen (DIN) varied between channel types. DIN uptake was greater in the gentle-sloped, vegetated channel as compared to the incised, steep, and sparsely vegetated channel and was highly correlated with diel patterns of incident light and dissolved oxygen concentration. In a larger main channel with multiple discharge inputs (n=13), DIN concentrations were >300 microM, with pH > 8.5, after 5 km of transport. Ammonium represented 25-30% of the large-channel DIN, and ammonium concentrations remained relatively constant with time, with only a weak diel pattern evident. In July 2003, the average daily large-channel DIN load was 23 kg N day(-1) entering the Powder River, an amount which substantially increased the total Powder River DIN load after the channel confluence. These results suggest that CBNG discharge may be an important source of DIN to western watersheds, at least at certain times of the year, and that net oxidation and/or removal is dependent upon the extent of contact with sediment and biomass, type of drainage channel, and time of day.


Assuntos
Carvão Mineral , Combustíveis Fósseis , Compostos Inorgânicos/química , Nitrogênio/química , Wyoming
6.
Environ Sci Technol ; 40(4): 1154-62, 2006 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-16572769

RESUMO

Disposal of treated wastewater for more than 60 years onto infiltration beds on Cape Cod, Massachusetts produced a groundwater contaminant plume greater than 6 km long in a surficial sand and gravel aquifer. In December 1995 the wastewater disposal ceased. A long-term, continuous study was conducted to characterize the post-cessation attenuation of the plume from the source to 0.6 km downgradient. Concentrations and total pools of mobile constituents, such as boron and nitrate, steadily decreased within 1-4 years along the transect. Dissolved organic carbon loads also decreased, but to a lesser extent, particularly downgradient of the infiltration beds. After 4 years, concentrations and pools of carbon and nitrogen in groundwater were relatively constant with time and distance, but substantially elevated above background. The contaminant plume core remained anoxic for the entire 10-year study period; temporal patterns of integrated oxygen deficit decreased slowly at all sites. In 2004, substantial amounts of total dissolved carbon (7 mol C m(-2)) and fixed (dissolved plus sorbed) inorganic nitrogen (0.5 mol N m(-2)) were still present in a 28-m vertical interval at the disposal site. Sorbed constituents have contributed substantially to the dissolved carbon and nitrogen pools and are responsible for the long-term persistence of the contaminant plume. Natural aquifer restoration at the discharge location will take at least several decades, even though groundwater flow rates and the potential for contaminant flushing are relatively high.


Assuntos
Carbono/análise , Nitrogênio/análise , Eliminação de Resíduos Líquidos , Abastecimento de Água/análise , Massachusetts , Poluentes Químicos da Água
7.
Water Res ; 39(10): 2014-23, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15890383

RESUMO

Nitrate removal by hydrogen-coupled denitrification was examined using flow-through, packed-bed bioreactors to develop a small-scale, cost effective system for treating nitrate-contaminated drinking-water supplies. Nitrate removal was accomplished using a Rhodocyclus sp., strain HOD 5, isolated from a sole-source drinking-water aquifer. The autotrophic capacity of the purple non-sulfur photosynthetic bacterium made it particularly adept for this purpose. Initial tests used a commercial bioreactor filled with glass beads and countercurrent, non-sterile flow of an autotrophic, air-saturated, growth medium and hydrogen gas. Complete removal of 2 mM nitrate was achieved for more than 300 days of operation at a 2-h retention time. A low-cost hydrogen generator/bioreactor system was then constructed from readily available materials as a water treatment approach using the Rhodocyclus strain. After initial tests with the growth medium, the constructed system was tested using nitrate-amended drinking water obtained from fractured granite and sandstone aquifers, with moderate and low TDS loads, respectively. Incomplete nitrate removal was evident in both water types, with high-nitrite concentrations in the bioreactor output, due to a pH increase, which inhibited nitrite reduction. This was rectified by including carbon dioxide in the hydrogen stream. Additionally, complete nitrate removal was accomplished with wastewater-impacted surface water, with a concurrent decrease in dissolved organic carbon. The results of this study using three chemically distinct water supplies demonstrate that hydrogen-coupled denitrification can serve as the basis for small-scale remediation and that pilot-scale testing might be the next logical step.


Assuntos
Reatores Biológicos , Hidrogênio/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Abastecimento de Água , Carbono/análise , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Concentração de Íons de Hidrogênio , Compostos Orgânicos/análise , Compostos Orgânicos/metabolismo , Oxirredução , Rhodocyclaceae/metabolismo , Poluentes Químicos da Água/metabolismo , Purificação da Água/instrumentação , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA