Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 128(11): 113001, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35363015

RESUMO

The recently developed exact factorization approach condenses all electronic effects on the nuclear subsystem into scalar and vector potentials that appear in an effective time dependent Schrödinger equation. Starting from this equation, we derive subsystem Ehrenfest identities characterizing the energy, momentum, and angular momentum transfer between electrons and nuclei. An effective electromagnetic force operator induced by the electromagnetic field corresponding to the effective scalar and vector potentials appears in all three identities. The effective magnetic field has two components that can be identified with the Berry curvature calculated with (a) different Cartesian coordinates of the same nucleus and (b) arbitrary Cartesian coordinates of two different nuclei. (a) has a classical interpretation as the induced magnetic field felt by the nucleus, while (b) has no classical analog. Subsystem Ehrenfest identities are ideally suited for quantifying energy transfer in electron-phonon systems. With two explicit examples we demonstrate the usefulness of the new identities.

2.
Philos Trans A Math Phys Eng Sci ; 380(2223): 20200383, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35341302

RESUMO

Factoring a wave function into marginal and conditional factors partitions the subsystem kinetic energy into two terms. The first depends solely on the marginal wave function, through its gauge-covariant derivative, while the second depends on the quantum metric of the conditional wave function over the manifold of marginal variables. We derive an identity for the rate of change of the second term. This article is part of the theme issue 'Chemistry without the Born-Oppenheimer approximation'.

3.
J Phys Condens Matter ; 34(18)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-34544070

RESUMO

Designing materials with advanced functionalities is the main focus of contemporary solid-state physics and chemistry. Research efforts worldwide are funneled into a few high-end goals, one of the oldest, and most fascinating of which is the search for an ambient temperature superconductor (A-SC). The reason is clear: superconductivity at ambient conditions implies being able to handle, measure and access a single, coherent, macroscopic quantum mechanical state without the limitations associated with cryogenics and pressurization. This would not only open exciting avenues for fundamental research, but also pave the road for a wide range of technological applications, affecting strategic areas such as energy conservation and climate change. In this roadmap we have collected contributions from many of the main actors working on superconductivity, and asked them to share their personal viewpoint on the field. The hope is that this article will serve not only as an instantaneous picture of the status of research, but also as a true roadmap defining the main long-term theoretical and experimental challenges that lie ahead. Interestingly, although the current research in superconductor design is dominated by conventional (phonon-mediated) superconductors, there seems to be a widespread consensus that achieving A-SC may require different pairing mechanisms.In memoriam, to Neil Ashcroft, who inspired us all.

4.
Phys Rev Lett ; 127(11): 116401, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34558918

RESUMO

A many-body wave function can be factorized in Fock space into a marginal amplitude describing a set of strongly correlated orbitals and a conditional amplitude for the remaining weakly correlated part. The marginal amplitude is the solution of a Schrödinger equation with an effective Hamiltonian that can be viewed as embedding the marginal wave function in the environment of weakly correlated electrons. Here, the complementary equation for the conditional amplitude is replaced by a generalized Kohn-Sham equation, for which an orbital-dependent functional approximation is shown to reproduce the topological phase diagram of a multiband Hubbard model as a function of crystal field and Hubbard parameters. The roles of band filling and interband fluctuations are elucidated.

5.
J Phys Chem Lett ; 9(24): 7045-7051, 2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30501191

RESUMO

The many-body Berry phase formula for macroscopic polarization is approximated by a sum of natural orbital geometric phases with fractional occupation numbers accounting for the dominant correlation effects. This formula accurately reproduces the exact polarization in the Rice-Mele-Hubbard model across the band insulator-Mott insulator transition. A similar formula based on a reduced Berry curvature accurately predicts the interaction-induced quenching of Thouless topological charge pumping.

6.
J Chem Phys ; 148(8): 084110, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29495788

RESUMO

We perform model calculations for a stretched LiF molecule, demonstrating that nonadiabatic charge transfer effects can be accurately and seamlessly described within a density functional framework. In alkali halides like LiF, there is an abrupt change in the ground state electronic distribution due to an electron transfer at a critical bond length R = Rc, where an avoided crossing of the lowest adiabatic potential energy surfaces calls the validity of the Born-Oppenheimer approximation into doubt. Modeling the R-dependent electronic structure of LiF within a two-site Hubbard model, we find that nonadiabatic electron-nuclear coupling produces a sizable elongation of the critical Rc by 0.5 bohr. This effect is very accurately captured by a simple and rigorously derived correction, with an M-1 prefactor, to the exchange-correlation potential in density functional theory, M = reduced nuclear mass. Since this nonadiabatic term depends on gradients of the nuclear wave function and conditional electronic density, ∇Rχ(R) and ∇Rn(r, R), it couples the Kohn-Sham equations at neighboring R points. Motivated by an observed localization of nonadiabatic effects in nuclear configuration space, we propose a local conditional density approximation-an approximation that reduces the search for nonadiabatic density functionals to the search for a single function y(n).

7.
Phys Rev Lett ; 117(19): 193001, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27858424

RESUMO

The ground state energy of a system of electrons (r=r_{1},r_{2},…) and nuclei (R=R_{1},R_{2},…) is proven to be a variational functional of the electronic density n(r,R) and paramagnetic current density j_{p}(r,R) conditional on R, the nuclear wave function χ(R), an induced vector potential A_{µ}(R) and a quantum geometric tensor T_{µν}(R). n, j_{p}, A_{µ} and T_{µν} are defined in terms of the conditional electronic wave function Φ_{R}(r). The ground state (n,j_{p},χ,A_{µ},T_{µν}) can be calculated by solving self-consistently (i) conditional Kohn-Sham equations containing effective scalar and vector potentials v_{s}(r) and A_{xc}(r) that depend parametrically on R, (ii) the Schrödinger equation for χ(R), and (iii) Euler-Lagrange equations that determine T_{µν}. The theory is applied to the E⊗e Jahn-Teller model.

8.
Nat Nanotechnol ; 11(6): 499-508, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27272139

RESUMO

Scanning tunnelling microscopy and break-junction experiments realize metallic and molecular nanocontacts that act as ideal one-dimensional channels between macroscopic electrodes. Emergent nanoscale phenomena typical of these systems encompass structural, mechanical, electronic, transport, and magnetic properties. This Review focuses on the theoretical explanation of some of these properties obtained with the help of first-principles methods. By tracing parallel theoretical and experimental developments from the discovery of nanowire formation and conductance quantization in gold nanowires to recent observations of emergent magnetism and Kondo correlations, we exemplify the main concepts and ingredients needed to bring together ab initio calculations and physical observations. It can be anticipated that diode, sensor, spin-valve and spin-filter functionalities relevant for spintronics and molecular electronics applications will benefit from the physical understanding thus obtained.

9.
Proc Natl Acad Sci U S A ; 111(1): 69-74, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24367113

RESUMO

Molecular contacts are generally poorly conducting because their energy levels tend to lie far from the Fermi energy of the metal contact, necessitating undesirably large gate and bias voltages in molecular electronics applications. Molecular radicals are an exception because their partly filled orbitals undergo Kondo screening, opening the way to electron passage even at zero bias. Whereas that phenomenon has been experimentally demonstrated for several complex organic radicals, quantitative theoretical predictions have not been attempted so far. It is therefore an open question whether and to what extent an ab initio-based theory is able to make accurate predictions for Kondo temperatures and conductance lineshapes. Choosing nitric oxide (NO) as a simple and exemplary spin 1/2 molecular radical, we present calculations based on a combination of density functional theory and numerical renormalization group (DFT+NRG), predicting a zero bias spectral anomaly with a Kondo temperature of 15 K for NO/Au(111). A scanning tunneling spectroscopy study is subsequently carried out to verify the prediction, and a striking zero bias Kondo anomaly is confirmed, still quite visible at liquid nitrogen temperatures. Comparison shows that the experimental Kondo temperature of about 43 K is larger than the theoretical one, whereas the inverted Fano lineshape implies a strong source of interference not included in the model. These discrepancies are not a surprise, providing in fact an instructive measure of the approximations used in the modeling, which supports and qualifies the viability of the density functional theory and numerical renormalization group approach to the prediction of conductance anomalies in larger molecular radicals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA